{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T04:42:02Z","timestamp":1726116122147},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030698850"},{"type":"electronic","value":"9783030698867"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-69886-7_2","type":"book-chapter","created":{"date-parts":[[2021,2,19]],"date-time":"2021-02-19T21:18:56Z","timestamp":1613769536000},"page":"14-29","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Collaborative Data Analysis: Non-model Sharing-Type Machine Learning for Distributed Data"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4994-2499","authenticated-orcid":false,"given":"Akira","family":"Imakura","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5547-3919","authenticated-orcid":false,"given":"Xiucai","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Tetsuya","family":"Sakurai","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,20]]},"reference":[{"key":"2_CR1","doi-asserted-by":"crossref","unstructured":"Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308\u2013318. ACM (2016)","DOI":"10.1145\/2976749.2978318"},{"key":"2_CR2","volume-title":"Pattern Recognition and Machine Learning (Information Science and Statistics)","author":"CM Bishop","year":"2006","unstructured":"Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Heidelberg (2006)"},{"key":"2_CR3","unstructured":"Bogdanova, A., Nakai, A., Okada, Y., Imakura, A., Sakurai, T.: Federated learning system without model sharing through integration of dimensional reduced data representations. In: International Workshop on Federated Learning for User Privacy and Data Confidentiality in Conjunction with IJCAI 2020 (FL-IJCAI 2020) (2020, accepted)"},{"key":"2_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-662-53887-6_1","volume-title":"Advances in Cryptology \u2013 ASIACRYPT 2016","author":"I Chillotti","year":"2016","unstructured":"Chillotti, I., Gama, N., Georgieva, M., Izabach\u00e8ne, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3\u201333. Springer, Heidelberg (2016). https:\/\/doi.org\/10.1007\/978-3-662-53887-6_1"},{"issue":"6","key":"2_CR5","doi-asserted-by":"publisher","first-page":"547","DOI":"10.1038\/nbt.4108","volume":"36","author":"H Cho","year":"2018","unstructured":"Cho, H., Wu, D.J., Berger, B.: Secure genome-wide association analysis using multiparty computation. Nat. Biotechnol. 36(6), 547 (2018)","journal-title":"Nat. Biotechnol."},{"key":"2_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/11787006_1","volume-title":"Automata, Languages and Programming","author":"C Dwork","year":"2006","unstructured":"Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1\u201312. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11787006_1"},{"issue":"2","key":"2_CR7","first-page":"179","volume":"7","author":"RA Fisher","year":"1936","unstructured":"Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 7(2), 179\u2013188 (1936)","journal-title":"Ann. Hum. Genet."},{"key":"2_CR8","doi-asserted-by":"crossref","unstructured":"Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Stoc, vol. 9, pp. 169\u2013178 (2009)","DOI":"10.1145\/1536414.1536440"},{"key":"2_CR9","unstructured":"Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201\u2013210 (2016)"},{"key":"2_CR10","unstructured":"He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, pp. 153\u2013160 (2004)"},{"key":"2_CR11","doi-asserted-by":"crossref","unstructured":"Imakura, A., Matsuda, M., Ye, X., Sakurai, T.: Complex moment-based supervised eigenmap for dimensionality reduction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3910\u20133918 (2019)","DOI":"10.1609\/aaai.v33i01.33013910"},{"key":"2_CR12","unstructured":"Imakura, A., Sakurai, T.: Data collaboration analysis for distributed datasets. arXiv preprint arXiv:1902.07535 (2019)"},{"key":"2_CR13","doi-asserted-by":"publisher","first-page":"04020018","DOI":"10.1061\/AJRUA6.0001058","volume":"6","author":"A Imakura","year":"2020","unstructured":"Imakura, A., Sakurai, T.: Data collaboration analysis framework using centralization of individual intermediate representations for distributed data sets. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civil Eng. 6, 04020018 (2020)","journal-title":"ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civil Eng."},{"key":"2_CR14","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1137\/14099231X","volume":"37","author":"S Ito","year":"2016","unstructured":"Ito, S., Murota, K.: An algorithm for the generalized eigenvalue problem for nonsquare matrix pencils by minimal perturbation approach. SIAM J. Matrix. Anal. Appl. 37, 409\u2013419 (2016)","journal-title":"SIAM J. Matrix. Anal. Appl."},{"key":"2_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"397","DOI":"10.1007\/11555827_23","volume-title":"Computer Security \u2013 ESORICS 2005","author":"S Jha","year":"2005","unstructured":"Jha, S., Kruger, L., McDaniel, P.: Privacy preserving clustering. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 397\u2013417. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/11555827_23"},{"key":"2_CR16","unstructured":"Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy and machine learning: a survey and review. arXiv preprint arXiv:1412.7584 (2014)"},{"key":"2_CR17","unstructured":"Kone\u010dn\u1ef3, J., McMahan, H.B., Ramage, D., Richtarik, P.: Federated optimization: distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016)"},{"key":"2_CR18","unstructured":"Kone\u010dn\u1ef3, J., McMahan, H.B., Yu, F.X., Richtarik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. In: NIPS Workshop on Private Multi-Party Machine Learning (2016). https:\/\/arxiv.org\/abs\/1610.05492"},{"key":"2_CR19","unstructured":"LeCun, Y.: The MNIST database of handwritten digits (1998). http:\/\/yann.lecun.com\/exdb\/mnist\/"},{"key":"2_CR20","doi-asserted-by":"crossref","unstructured":"Li, X., Chen, M., Nie, F., Wang, Q.: Locality adaptive discriminant analysis. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2201\u20132207. AAAI Press (2017)","DOI":"10.24963\/ijcai.2017\/306"},{"key":"2_CR21","first-page":"2579","volume":"9","author":"L van der Maaten","year":"2008","unstructured":"van der Maaten, L., Hinton, G., Visualizing data using t-SNE: J. Machine Learn. Res. 9, 2579\u20132605 (2008)","journal-title":"J. Machine Learn. Res."},{"key":"2_CR22","unstructured":"McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2016)"},{"issue":"11","key":"2_CR23","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1080\/14786440109462720","volume":"2","author":"K Pearson","year":"1901","unstructured":"Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559\u2013572 (1901)","journal-title":"London Edinburgh Dublin Philos. Mag. J. Sci."},{"key":"2_CR24","unstructured":"Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Proceeding of IEEE Workshop on Applications of Computer Vision (1994)"},{"key":"2_CR25","unstructured":"Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual variables (1998)"},{"key":"2_CR26","first-page":"583","volume":"3","author":"A Strehl","year":"2002","unstructured":"Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583\u2013617 (2002)","journal-title":"J. Mach. Learn. Res."},{"issue":"May","key":"2_CR27","first-page":"1027","volume":"8","author":"M Sugiyama","year":"2007","unstructured":"Sugiyama, M.: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J. Mach. Learn. Res. 8(May), 1027\u20131061 (2007)","journal-title":"J. Mach. Learn. Res."},{"key":"2_CR28","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","volume":"58","author":"R Tibshirani","year":"1996","unstructured":"Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soci. (Series B) 58, 267\u2013288 (1996)","journal-title":"J. Royal Stat. Soci. (Series B)"},{"key":"2_CR29","unstructured":"Yang, Q.: GDPR, data shortage and AI (2019). https:\/\/aaai.org\/Conferences\/AAAI-19\/invited-speakers\/. Invited Talk of The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)"},{"key":"2_CR30","doi-asserted-by":"crossref","unstructured":"Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), Article 12 (2019)","DOI":"10.1145\/3298981"},{"key":"2_CR31","doi-asserted-by":"crossref","unstructured":"Ye, X., Li, H., Imakura, A., Sakurai, T.: Distributed collaborative feature selection based on intermediate representation. In: The 28th International Joint Conference on Artificial Intelligence (IJCAI-19). pp. 4142\u20134149 (2019)","DOI":"10.24963\/ijcai.2019\/575"},{"key":"2_CR32","unstructured":"Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-iid data. arXiv preprint arXiv:cs.LG\/1806.00582 (2018)"}],"container-title":["Lecture Notes in Computer Science","Knowledge Management and Acquisition for Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-69886-7_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T14:11:25Z","timestamp":1724508685000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-69886-7_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030698850","9783030698867"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-69886-7_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"20 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PKAW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pacific Rim Knowledge Acquisition Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Yokohama","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 January 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 January 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"pkaw2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.pkaw.org\/pkaw2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"36% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}