{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T04:41:46Z","timestamp":1726116106908},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030697808"},{"type":"electronic","value":"9783030697815"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-69781-5_3","type":"book-chapter","created":{"date-parts":[[2021,2,19]],"date-time":"2021-02-19T06:12:22Z","timestamp":1613715142000},"page":"31-47","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Cyber Threat Monitoring Systems - Comparing Attack Detection Performance of Ensemble Algorithms"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8075-531X","authenticated-orcid":false,"given":"Eva","family":"Maia","sequence":"first","affiliation":[]},{"given":"Bruno","family":"Reis","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2519-9859","authenticated-orcid":false,"given":"Isabel","family":"Pra\u00e7a","sequence":"additional","affiliation":[]},{"given":"Adrien","family":"Becue","sequence":"additional","affiliation":[]},{"given":"David","family":"Lancelin","sequence":"additional","affiliation":[]},{"given":"Samantha Dauguet","family":"Demailly","sequence":"additional","affiliation":[]},{"given":"Orlando","family":"Sousa","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,18]]},"reference":[{"key":"3_CR1","doi-asserted-by":"publisher","unstructured":"Agusta, Z., Adiwijaya, A.: Modified balanced random forest for improving imbalanced data prediction. Int. J. Adv. Intell. Inform. 5(1), 58\u201365 (2019). https:\/\/doi.org\/10.26555\/ijain.v5i1.255. http:\/\/ijain.org\/index.php\/IJAIN\/article\/view\/255","DOI":"10.26555\/ijain.v5i1.255"},{"issue":"2","key":"3_CR2","doi-asserted-by":"publisher","first-page":"1851","DOI":"10.1109\/COMST.2019.2891891","volume":"21","author":"A Alshamrani","year":"2019","unstructured":"Alshamrani, A., Myneni, S., Chowdhary, A., Huang, D.: A survey on advanced persistent threats: techniques, solutions, challenges, and research opportunities. IEEE Commun. Surv. Tutor. 21(2), 1851\u20131877 (2019)","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"3_CR3","doi-asserted-by":"publisher","first-page":"6249","DOI":"10.1109\/ACCESS.2019.2963724","volume":"8","author":"A Aslan","year":"2020","unstructured":"Aslan, A., Samet, R.: A comprehensive review on malware detection approaches. IEEE Access 8, 6249\u20136271 (2020)","journal-title":"IEEE Access"},{"key":"3_CR4","doi-asserted-by":"publisher","unstructured":"Brown, G.: Ensemble Learning, pp. 393\u2013402. Springer, Boston (2017). https:\/\/doi.org\/10.1007\/978-1-4899-7687-1_252","DOI":"10.1007\/978-1-4899-7687-1_252"},{"key":"3_CR5","unstructured":"Canadian Institute for Cybersecurity: KDD cup 1999 data, March 2018. http:\/\/mlexplained.com\/2018\/01\/05\/lightgbm-and-xgboost-explained\/"},{"key":"3_CR6","unstructured":"for Cybersecurity, C.I.: Intrusion detection evaluation dataset (CICIDS 2017), March 2018. https:\/\/www.unb.ca\/cic\/datasets\/ids-2017.html"},{"key":"3_CR7","unstructured":"Dewancker, I., McCourt, M., Clark, S., Hayes, P., Johnson, A., Ke, G.: A strategy for ranking optimization methods using multiple criteria. In: AutoML@ICML (2016)"},{"key":"3_CR8","doi-asserted-by":"publisher","unstructured":"Dhaliwal, S.S., Nahid, A.A., Abbas, R.: Effective intrusion detection system using XGBoost. Information 9(7) (2018). https:\/\/doi.org\/10.3390\/info9070149","DOI":"10.3390\/info9070149"},{"key":"3_CR9","doi-asserted-by":"publisher","unstructured":"Feurer, M., Hutter, F.: Hyperparameter Optimization, pp. 3\u201333. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-05318-5_1","DOI":"10.1007\/978-3-030-05318-5_1"},{"key":"3_CR10","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-84858-7","volume-title":"The Elements of Statistical Learning: Data Mining, Inference and Prediction","author":"T Hastie","year":"2009","unstructured":"Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, New York (2009). https:\/\/doi.org\/10.1007\/978-0-387-84858-7","edition":"2"},{"key":"3_CR11","doi-asserted-by":"publisher","unstructured":"Hu, W., Hu, W., Maybank, S.: AdaBoost-based algorithm for network intrusion detection. IEEE Trans. Syst. Man Cybernet. Part B Cybernet. 38, 577\u201383 (2008). https:\/\/doi.org\/10.1109\/TSMCB.2007.914695. A Publication of the IEEE Systems, Man, and Cybernetics Society","DOI":"10.1109\/TSMCB.2007.914695"},{"key":"3_CR12","unstructured":"Koehrsen, W.: An implementation and explanation of the random forest in python, August 2018. https:\/\/towardsdatascience.com\/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76"},{"key":"3_CR13","doi-asserted-by":"crossref","unstructured":"Latah, M., Toker, L.: Towards an efficient anomaly-based intrusion detection for software-defined networks, March 2018","DOI":"10.1049\/iet-net.2018.5080"},{"key":"3_CR14","doi-asserted-by":"publisher","unstructured":"Mazini, M., Shirazi, B., Mahdavi, I.: Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms. J. King Saud Univ. Comput. Inf. Sci. (2018). https:\/\/doi.org\/10.1016\/j.jksuci.2018.03.011","DOI":"10.1016\/j.jksuci.2018.03.011"},{"key":"3_CR15","unstructured":"Parr, T., Turgutlu, K., Csiszar, C., Howard, J.: Beware default random forest importances, March 2018. https:\/\/explained.ai\/rf-importance\/"},{"key":"3_CR16","doi-asserted-by":"publisher","unstructured":"Polikar, R.: Ensemble based systems in decision making. IEEE Circuit Syst. Mag. 6, 21\u201345 (2006). https:\/\/doi.org\/10.1109\/MCAS.2006.1688199","DOI":"10.1109\/MCAS.2006.1688199"},{"key":"3_CR17","unstructured":"Probst, P., Boulesteix, A.L.: To tune or not to tune the number of trees in random forest. J. Mach. Learn. Res. 18(1), 6673\u20136690 (2017). http:\/\/dl.acm.org\/citation.cfm?id=3122009.3242038"},{"key":"3_CR18","doi-asserted-by":"publisher","unstructured":"Ramadhan, M., Sitanggang, I., Rizky Nasution, F., Ghifari, A.: Parameter tuning in random forest based on grid search method for gender classification based on voice frequency. DEStech Trans. Comput. Sci. Eng. (2017). https:\/\/doi.org\/10.12783\/dtcse\/cece2017\/14611","DOI":"10.12783\/dtcse\/cece2017\/14611"},{"key":"3_CR19","doi-asserted-by":"publisher","unstructured":"Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31, 357\u2013374 (2012). https:\/\/doi.org\/10.1016\/j.cose.2011.12.012","DOI":"10.1016\/j.cose.2011.12.012"},{"key":"3_CR20","doi-asserted-by":"publisher","unstructured":"Utic, Z., Ramachandran, K.: Network attribute selection, classification and accuracy (NASCA) algorithm for intrusion detection systems, April 2017. https:\/\/doi.org\/10.1109\/THS.2017.7943463","DOI":"10.1109\/THS.2017.7943463"},{"key":"3_CR21","doi-asserted-by":"crossref","unstructured":"Haines, J.W., Lippmann, R.P., Fried, D.J., Zissman, M.A., Tran, E.: 1999 DARPA intrusion detection evaluation: design and procedures, p. 188, February 2001","DOI":"10.1016\/S1389-1286(00)00139-0"},{"key":"3_CR22","doi-asserted-by":"crossref","unstructured":"Yulianto, A., Sukarno, P., Suwastika, N.: Improving AdaBoost-based intrusion detection system (IDS) performance on CIC IDS 2017 dataset. J. Phys. Conf. Ser. 1192, 012018 (2019)","DOI":"10.1088\/1742-6596\/1192\/1\/012018"},{"key":"3_CR23","doi-asserted-by":"publisher","unstructured":"Zhu, J., Rosset, S., Zou, H., Hastie, T.: Multi-class AdaBoost. Stat. Interface 2 (2006). https:\/\/doi.org\/10.4310\/SII.2009.v2.n3.a8","DOI":"10.4310\/SII.2009.v2.n3.a8"}],"container-title":["Lecture Notes in Computer Science","Cyber-Physical Security for Critical Infrastructures Protection"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-69781-5_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,18]],"date-time":"2022-12-18T00:24:41Z","timestamp":1671323081000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-69781-5_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030697808","9783030697815"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-69781-5_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"18 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CPS4CIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Cyber-Physical Security for Critical Infrastructures Protection","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guildford","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cps4cip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/fbk.eu\/cps4cip20","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"23","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"52% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held online due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}