{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T02:12:37Z","timestamp":1726366357076},"publisher-location":"Cham","reference-count":45,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030695316"},{"type":"electronic","value":"9783030695323"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-69532-3_30","type":"book-chapter","created":{"date-parts":[[2021,2,26]],"date-time":"2021-02-26T08:04:33Z","timestamp":1614326673000},"page":"488-503","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":20,"title":["Betrayed by Motion: Camouflaged Object Discovery via Motion Segmentation"],"prefix":"10.1007","author":[{"given":"Hala","family":"Lamdouar","sequence":"first","affiliation":[]},{"given":"Charig","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Weidi","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Andrew","family":"Zisserman","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,27]]},"reference":[{"key":"30_CR1","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1016\/0166-2236(92)90344-8","volume":"15","author":"MA Goodale","year":"1992","unstructured":"Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends Neurosci. 15, 20\u201325 (1992)","journal-title":"Trends Neurosci."},{"key":"30_CR2","doi-asserted-by":"crossref","unstructured":"Tokmakov, P., Schmid, C., Alahari, K.: Learning to segment moving objects. IJCV 127, 282\u2013301 (2019)","DOI":"10.1007\/s11263-018-1122-2"},{"key":"30_CR3","unstructured":"Bideau, P., Learned-Miller, E.: A detailed rubric for motion segmentation. arXiv preprint arXiv:1610.10033 (2016)"},{"key":"30_CR4","unstructured":"Pont-Tuset, J., Perazzi, F., Caelles, S., Arbel\u00e1ez, P., Sorkine-Hornung, A., Gool, L.V.: The 2017 Davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)"},{"key":"30_CR5","doi-asserted-by":"crossref","unstructured":"Xu, N., et al.: YouTube-VOS: a large-scale video object segmentation benchmark. In: Proceedings of ECCV (2018)","DOI":"10.1007\/978-3-030-01228-1_36"},{"key":"30_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"282","DOI":"10.1007\/978-3-642-15555-0_21","volume-title":"Computer Vision \u2013 ECCV 2010","author":"T Brox","year":"2010","unstructured":"Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 282\u2013295. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-15555-0_21"},{"key":"30_CR7","doi-asserted-by":"crossref","unstructured":"Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: Proceedings of ICCV (2011)","DOI":"10.1109\/ICCV.2011.6126418"},{"key":"30_CR8","doi-asserted-by":"crossref","unstructured":"Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: Proceedings of ICCV (2013)","DOI":"10.1109\/ICCV.2013.223"},{"key":"30_CR9","doi-asserted-by":"crossref","unstructured":"Jain, S.D., Xiong, B., Grauman, K.: FusionSeg: learning to combine motion and appearance for fully automatic segmentation of generic objects in videos. In: Proceedings of CVPR (2017)","DOI":"10.1109\/CVPR.2017.228"},{"key":"30_CR10","doi-asserted-by":"crossref","unstructured":"Dave, A., Tokmakov, P., Ramanan, D.: Towards segmenting anything that moves. In: ICCV Workshop on Holistic Video Understanding (2019)","DOI":"10.1109\/ICCVW.2019.00187"},{"key":"30_CR11","doi-asserted-by":"crossref","unstructured":"Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of ICCV (2019)","DOI":"10.1109\/ICCV.2019.00932"},{"key":"30_CR12","doi-asserted-by":"crossref","unstructured":"Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: FEELVOS: fast end-to-end embedding learning for video object segmentation. In: Proceedings of CVPR (2019)","DOI":"10.1109\/CVPR.2019.00971"},{"key":"30_CR13","doi-asserted-by":"crossref","unstructured":"Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking emerges by colorizing videos. In: ECCV (2018)","DOI":"10.1007\/978-3-030-01261-8_24"},{"key":"30_CR14","doi-asserted-by":"crossref","unstructured":"Wang, W., Lu, X., Shen, J., Crandall, D.J., Shao, L.: Zero-shot video object segmentation via attentive graph neural networks. In: Proceedings of ICCV (2019)","DOI":"10.1109\/ICCV.2019.00933"},{"key":"30_CR15","unstructured":"Lai, Z., Xie, W.: Self-supervised learning for video correspondence flow. In: Proceedings of BMVC (2019)"},{"key":"30_CR16","doi-asserted-by":"crossref","unstructured":"Lai, Z., Lu, E., Xie, W.: MAST: a memory-augmented self-supervised tracker. In: Proceedings of CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00651"},{"key":"30_CR17","unstructured":"Maninis, K.K., et al.: Video object segmentation without temporal information. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1515-1530 (2018)"},{"key":"30_CR18","doi-asserted-by":"crossref","unstructured":"Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. arXiv (2017)","DOI":"10.5244\/C.31.116"},{"key":"30_CR19","doi-asserted-by":"crossref","unstructured":"Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taix\u00e9, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: Proceedings of CVPR (2017)","DOI":"10.1109\/CVPR.2017.565"},{"key":"30_CR20","doi-asserted-by":"crossref","unstructured":"Fragkiadaki, K., Zhang, G., Shi, J.: Video segmentation by tracing discontinuities in a trajectory embedding. In: Proceedings of CVPR (2012)","DOI":"10.1109\/CVPR.2012.6247883"},{"key":"30_CR21","doi-asserted-by":"crossref","unstructured":"Keuper, M., Andres, B., Brox, T.: Motion trajectory segmentation via minimum cost multicuts. In: Proceedings of ICCV (2015)","DOI":"10.1109\/ICCV.2015.374"},{"key":"30_CR22","doi-asserted-by":"crossref","unstructured":"Yang, Z., Wang, Q., Bertinetto, L., Bai, S., Hu, W., Torr, P.H.: Anchor diffusion for unsupervised video object segmentation. In: Proceedings of ICCV (2019)","DOI":"10.1109\/ICCV.2019.00102"},{"key":"30_CR23","unstructured":"Xiankai, L., Wenguan, W., Chao, M., Jianbing, S., Ling, S., Fatih, P.: See more, know more: unsupervised video object segmentation with co-attention Siamese networks. In: Proceedings of CVPR (2019)"},{"key":"30_CR24","doi-asserted-by":"crossref","unstructured":"Koh, Y.J., Kim, C.S.: Primary object segmentation in videos based on region augmentation and reduction. In: Proceedings of CVPR (2017)","DOI":"10.1109\/CVPR.2017.784"},{"key":"30_CR25","doi-asserted-by":"crossref","unstructured":"Fan, D.P., Wang, W., Cheng, M.M., Shen, J.: Shifting more attention to video salient object detection. In: Proceedings of CVPR (2019)","DOI":"10.1109\/CVPR.2019.00875"},{"key":"30_CR26","unstructured":"Le, T.N., Nguyen, T.V., Nie, Z., Tran, M.T., Sugimoto, A.: Anabranch network for camouflaged object segmentation. CVIU 184, 45\u201356 (2016)"},{"key":"30_CR27","doi-asserted-by":"crossref","unstructured":"Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN:0521540518","DOI":"10.1017\/CBO9780511811685"},{"key":"30_CR28","unstructured":"Szeliski, R.: Image alignment and stitching: a tutorial. Technical report MSR-TR-2004-92 (2004)"},{"key":"30_CR29","doi-asserted-by":"crossref","unstructured":"Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of ICCV, pp. 1150\u20131157 (1999)","DOI":"10.1109\/ICCV.1999.790410"},{"key":"30_CR30","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1145\/358669.358692","volume":"24","author":"MA Fischler","year":"1981","unstructured":"Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381\u2013395 (1981)","journal-title":"Commun. ACM"},{"key":"30_CR31","doi-asserted-by":"crossref","unstructured":"Brachmann, E., et al.: DSAC-differentiable RANSAC for camera localization. In: Proceedings of CVPR (2017)","DOI":"10.1109\/CVPR.2017.267"},{"key":"30_CR32","doi-asserted-by":"crossref","unstructured":"Brachmann, E., Rother, C.: Learning less is more-6d camera localization via 3d surface regression. In: Proceedings of CVPR (2018)","DOI":"10.1109\/CVPR.2018.00489"},{"key":"30_CR33","doi-asserted-by":"crossref","unstructured":"Ranftl, R., Koltun, V.: Deep fundamental matrix estimation. In: Proceedings of ECCV (2018)","DOI":"10.1007\/978-3-030-01246-5_18"},{"key":"30_CR34","doi-asserted-by":"crossref","unstructured":"Rocco, I., Arandjelovic, R., Sivic, J.: End-to-end weakly-supervised semantic alignment. In: Proceedings of CVPR (2018)","DOI":"10.1109\/CVPR.2018.00723"},{"key":"30_CR35","doi-asserted-by":"crossref","unstructured":"Brachmann, E., Rother, C.: Neural-guided RANSAC: learning where to sample model hypotheses. In: Proceedings of ICCV (2019)","DOI":"10.1109\/ICCV.2019.00442"},{"key":"30_CR36","doi-asserted-by":"crossref","unstructured":"Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of CVPR (2018)","DOI":"10.1109\/CVPR.2018.00931"},{"key":"30_CR37","doi-asserted-by":"crossref","unstructured":"Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: Proceedings of CVPR (2018)","DOI":"10.1109\/CVPR.2018.00282"},{"key":"30_CR38","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"30_CR39","unstructured":"Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. In: Proceedings of ICLR (2016)"},{"key":"30_CR40","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"433","DOI":"10.1007\/978-3-319-46484-8_26","volume-title":"Computer Vision \u2013 ECCV 2016","author":"P Bideau","year":"2016","unstructured":"Bideau, P., Learned-Miller, E.: It\u2019s moving! a probabilistic model for causal motion segmentation in moving camera videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 433\u2013449. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46484-8_26"},{"key":"30_CR41","doi-asserted-by":"crossref","unstructured":"Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of CVPR (2016)","DOI":"10.1109\/CVPR.2016.85"},{"key":"30_CR42","doi-asserted-by":"crossref","unstructured":"Tokmakov, P., Alahari, K., Schmid, C.: Learning motion patterns in videos. In: Proceedings of CVPR (2017)","DOI":"10.1109\/CVPR.2017.64"},{"key":"30_CR43","doi-asserted-by":"crossref","unstructured":"Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of CVPR (2016)","DOI":"10.1109\/CVPR.2016.438"},{"key":"30_CR44","doi-asserted-by":"crossref","unstructured":"Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep network. In: Proceedings of CVPR (2017)","DOI":"10.1109\/CVPR.2017.179"},{"key":"30_CR45","unstructured":"Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ACCV 2020"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-69532-3_30","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,2,26]],"date-time":"2021-02-26T08:55:25Z","timestamp":1614329725000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-69532-3_30"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030695316","9783030695323"],"references-count":45,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-69532-3_30","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"27 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kyoto","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 December 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"accv2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/accv2020.kyoto\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"768","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"254","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}