{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:05:59Z","timestamp":1740099959739,"version":"3.37.3"},"publisher-location":"Cham","reference-count":63,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030695316"},{"type":"electronic","value":"9783030695323"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-69532-3_3","type":"book-chapter","created":{"date-parts":[[2021,2,26]],"date-time":"2021-02-26T08:04:33Z","timestamp":1614326673000},"page":"36-53","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Second-Order Camera-Aware Color Transformation for Cross-Domain Person Re-identification"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4373-2610","authenticated-orcid":false,"given":"Wangmeng","family":"Xiang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7603-6497","authenticated-orcid":false,"given":"Hongwei","family":"Yong","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5735-2910","authenticated-orcid":false,"given":"Jianqiang","family":"Huang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8232-5049","authenticated-orcid":false,"given":"Xian-Sheng","family":"Hua","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2078-4215","authenticated-orcid":false,"given":"Lei","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,27]]},"reference":[{"key":"3_CR1","unstructured":"Gheissari, N., Sebastian, T.B., Hartley, R.: Person reidentification using spatiotemporal appearance. In: CVPR (2006)"},{"key":"3_CR2","doi-asserted-by":"crossref","unstructured":"Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.145"},{"key":"3_CR3","doi-asserted-by":"crossref","unstructured":"Sun, Y., Zheng, L., Deng, W., Wang, S.: SVDNet for pedestrian retrieval. In: ICCV (2017)","DOI":"10.1109\/ICCV.2017.410"},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Zhao, L., Li, X., Wang, J., Zhuang, Y.: Deeply-learned part-aligned representations for person re-identification. In: ICCV (2017)","DOI":"10.1109\/ICCV.2017.349"},{"key":"3_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"791","DOI":"10.1007\/978-3-319-46484-8_48","volume-title":"Computer Vision \u2013 ECCV 2016","author":"RR Varior","year":"2016","unstructured":"Varior, R.R., Haloi, M., Wang, G.: Gated siamese convolutional neural network architecture for human re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 791\u2013808. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46484-8_48"},{"key":"3_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1007\/978-3-319-46478-7_9","volume-title":"Computer Vision \u2013 ECCV 2016","author":"RR Varior","year":"2016","unstructured":"Varior, R.R., Shuai, B., Lu, J., Xu, D., Wang, G.: a siamese long short-term memory architecture for human re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 135\u2013153. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46478-7_9"},{"key":"3_CR7","unstructured":"Geng, M., Wang, Y., Xiang, T., Tian, Y.: Deep transfer learning for person re-identification. arXiv preprint arXiv:1611.05244 (2016)"},{"key":"3_CR8","doi-asserted-by":"crossref","unstructured":"Li, D., Chen, X., Zhang, Z., Huang, K.: Learning deep context-aware features over body and latent parts for person re-identification. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.782"},{"key":"3_CR9","doi-asserted-by":"crossref","unstructured":"Zhao, H., et al.: Spindle Net: person re-identification with human body region guided feature decomposition and fusion. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.103"},{"key":"3_CR10","doi-asserted-by":"crossref","unstructured":"Yi, D., Lei, Z., Li, S.Z.: Deep metric learning for practical person re-identification. arXiv preprint arXiv:1407.4979 (2014)","DOI":"10.1109\/ICPR.2014.16"},{"key":"3_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"732","DOI":"10.1007\/978-3-319-46448-0_44","volume-title":"Computer Vision \u2013 ECCV 2016","author":"H Shi","year":"2016","unstructured":"Shi, H., et al.: Embedding deep metric for person re-identification: a study against large variations. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 732\u2013748. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_44"},{"key":"3_CR12","doi-asserted-by":"crossref","unstructured":"Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: CVPR (2015)","DOI":"10.1109\/CVPR.2015.7298832"},{"key":"3_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"875","DOI":"10.1007\/978-3-319-46454-1_53","volume-title":"Computer Vision \u2013 ECCV 2016","author":"C Jose","year":"2016","unstructured":"Jose, C., Fleuret, F.: Scalable metric learning via weighted approximate rank component analysis. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 875\u2013890. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46454-1_53"},{"key":"3_CR14","doi-asserted-by":"crossref","unstructured":"Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.434"},{"key":"3_CR15","doi-asserted-by":"crossref","unstructured":"Liao, S., Li, S.Z.: Efficient PSD constrained asymmetric metric learning for person re-identification. In: ICCV (2015)","DOI":"10.1109\/ICCV.2015.420"},{"key":"3_CR16","doi-asserted-by":"crossref","unstructured":"Zheng, Z., Zheng, L., Yang, Y.: Pedestrian alignment network for large-scale person re-identification. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.357"},{"key":"3_CR17","unstructured":"Zhang, Y., Li, X., Zhao, L., Zhang, Z.: Semantics-aware deep correspondence structure learning for robust person re-identification. In: IJCAI (2016)"},{"key":"3_CR18","doi-asserted-by":"crossref","unstructured":"Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 79\u201388 (2018)","DOI":"10.1109\/CVPR.2018.00016"},{"key":"3_CR19","doi-asserted-by":"crossref","unstructured":"Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: exemplar memory for domain adaptive person re-identification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)","DOI":"10.1109\/CVPR.2019.00069"},{"key":"3_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"176","DOI":"10.1007\/978-3-030-01261-8_11","volume-title":"Computer Vision \u2013 ECCV 2018","author":"Z Zhong","year":"2018","unstructured":"Zhong, Z., Zheng, L., Li, S., Yang, Y.: Generalizing a person retrieval model hetero- and homogeneously. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 176\u2013192. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01261-8_11"},{"key":"3_CR21","doi-asserted-by":"crossref","unstructured":"Fu, Y., Wei, Y., Wang, G., Zhou, Y., Shi, H., Huang, T.S.: Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6112\u20136121 (2019)","DOI":"10.1109\/ICCV.2019.00621"},{"key":"3_CR22","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672\u20132680 (2014)"},{"key":"3_CR23","doi-asserted-by":"crossref","unstructured":"Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00541"},{"key":"3_CR24","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"3_CR25","doi-asserted-by":"crossref","unstructured":"Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: CVPR (2015)","DOI":"10.1109\/ICCV.2015.133"},{"key":"3_CR26","doi-asserted-by":"crossref","unstructured":"Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: CVPR (2017)","DOI":"10.1109\/ICCV.2017.405"},{"key":"3_CR27","doi-asserted-by":"crossref","unstructured":"Chen, Y., Zhu, X., Gong, S.: Person re-identification by deep learning multi-scale representations. In: CVPR (2017)","DOI":"10.1109\/ICCVW.2017.304"},{"key":"3_CR28","first-page":"593","volume":"20","author":"S Zhou","year":"2017","unstructured":"Zhou, S., Wang, J., Shi, R., Hou, Q., Gong, Y., Zheng, N.: Large margin learning in set to set similarity comparison for person re-identification. IEEE Trans. Multimedia 20, 593\u2013604 (2017)","journal-title":"IEEE Trans. Multimedia"},{"key":"3_CR29","doi-asserted-by":"crossref","unstructured":"Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: CVPR (2015)","DOI":"10.1109\/CVPR.2015.7299016"},{"key":"3_CR30","doi-asserted-by":"crossref","unstructured":"Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: deep filter pairing neural network for person re-identification. In: CVPR (2014)","DOI":"10.1109\/CVPR.2014.27"},{"key":"3_CR31","unstructured":"Wu, L., Shen, C., van der Hengel, A.: PersonNet: person re-identification with deep convolutional neural networks. arXiv preprint arXiv:1601.07255 (2016)"},{"key":"3_CR32","unstructured":"Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)"},{"key":"3_CR33","doi-asserted-by":"crossref","unstructured":"Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by multi-channel parts-based CNN with improved triplet loss function. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.149"},{"key":"3_CR34","first-page":"723","volume":"13","author":"A Gretton","year":"2012","unstructured":"Gretton, A., Borgwardt, K.M., Rasch, M.J., Sch\u00f6lkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723\u2013773 (2012)","journal-title":"J. Mach. Learn. Res."},{"key":"3_CR35","doi-asserted-by":"crossref","unstructured":"Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)","DOI":"10.1609\/aaai.v30i1.10306"},{"key":"3_CR36","unstructured":"Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180\u20131189 (2015)"},{"key":"3_CR37","unstructured":"Chen, C., et al.: HoMM: Higher-order moment matching for unsupervised domain adaptation, order 1, p. 20 (2020)"},{"key":"3_CR38","unstructured":"Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. In: Advances in Neural Information Processing Systems, pp. 2110\u20132118 (2016)"},{"key":"3_CR39","unstructured":"Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2988\u20132997. JMLR.org (2017)"},{"key":"3_CR40","doi-asserted-by":"crossref","unstructured":"Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223\u20132232 (2017)","DOI":"10.1109\/ICCV.2017.244"},{"key":"3_CR41","doi-asserted-by":"crossref","unstructured":"Wang, J., Zhu, X., Gong, S., Li, W.: Transferable joint attribute-identity deep learning for unsupervised person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2275\u20132284 (2018)","DOI":"10.1109\/CVPR.2018.00242"},{"key":"3_CR42","doi-asserted-by":"crossref","unstructured":"Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.: Deep learning for person re-identification: a survey and outlook. arXiv preprint arXiv:2001.04193 (2020)","DOI":"10.1109\/TPAMI.2021.3054775"},{"key":"3_CR43","doi-asserted-by":"crossref","unstructured":"Wu, A., Zheng, W.S., Lai, J.H.: Unsupervised person re-identification by camera-aware similarity consistency learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6922\u20136931 (2019)","DOI":"10.1109\/ICCV.2019.00702"},{"key":"3_CR44","unstructured":"Lan, X., Zhu, X., Gong, S.: Universal person re-identification (2019)"},{"key":"3_CR45","doi-asserted-by":"publisher","first-page":"107173","DOI":"10.1016\/j.patcog.2019.107173","volume":"102","author":"L Song","year":"2020","unstructured":"Song, L., et al.: Unsupervised domain adaptive re-identification: theory and practice. Pattern Recogn. 102, 107173 (2020)","journal-title":"Pattern Recogn."},{"key":"3_CR46","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015)"},{"key":"3_CR47","first-page":"8295","volume":"33","author":"Y Fu","year":"2019","unstructured":"Fu, Y., et al.: Horizontal pyramid matching for person re-identification. Proc. AAAI Conf. Artif. Intell. 33, 8295\u20138302 (2019)","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"key":"3_CR48","first-page":"226","volume":"96","author":"M Ester","year":"1996","unstructured":"Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96, 226\u2013231 (1996)","journal-title":"KDD"},{"key":"3_CR49","doi-asserted-by":"crossref","unstructured":"Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1318\u20131327 (2017)","DOI":"10.1109\/CVPR.2017.389"},{"key":"3_CR50","unstructured":"Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv preprint arXiv:1708.04896 (2017)"},{"key":"3_CR51","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"3_CR52","doi-asserted-by":"crossref","unstructured":"Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: CVPR (2015)","DOI":"10.1109\/CVPR.2015.7298832"},{"key":"3_CR53","doi-asserted-by":"crossref","unstructured":"Peng, P., et al.: Unsupervised cross-dataset transfer learning for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1306\u20131315 (2016)","DOI":"10.1109\/CVPR.2016.146"},{"key":"3_CR54","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3243316","volume":"14","author":"H Fan","year":"2018","unstructured":"Fan, H., Zheng, L., Yan, C., Yang, Y.: Unsupervised person re-identification: clustering and fine-tuning. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 14, 1\u201318 (2018)","journal-title":"ACM Trans. Multimedia Comput. Commun. Appl. (TOMM)"},{"key":"3_CR55","doi-asserted-by":"crossref","unstructured":"Yu, H.X., Wu, A., Zheng, W.S.: Cross-view asymmetric metric learning for unsupervised person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 994\u20131002 (2017)","DOI":"10.1109\/ICCV.2017.113"},{"key":"3_CR56","doi-asserted-by":"crossref","unstructured":"Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 994\u20131003 (2018)","DOI":"10.1109\/CVPR.2018.00110"},{"key":"3_CR57","doi-asserted-by":"crossref","unstructured":"Li, Y.J., Yang, F.E., Liu, Y.C., Yeh, Y.Y., Du, X., Frank Wang, Y.C.: Adaptation and re-identification network: An unsupervised deep transfer learning approach to person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 172\u2013178 (2018)","DOI":"10.1109\/CVPRW.2018.00054"},{"key":"3_CR58","doi-asserted-by":"crossref","unstructured":"Yu, H.X., Zheng, W.S., Wu, A., Guo, X., Gong, S., Lai, J.H.: Unsupervised person re-identification by soft multilabel learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2148\u20132157 (2019)","DOI":"10.1109\/CVPR.2019.00225"},{"key":"3_CR59","doi-asserted-by":"crossref","unstructured":"Li, Y.J., Lin, C.S., Lin, Y.B., Wang, Y.C.F.: Cross-dataset person re-identification via unsupervised pose disentanglement and adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7919\u20137929 (2019)","DOI":"10.1109\/ICCV.2019.00801"},{"key":"3_CR60","doi-asserted-by":"crossref","unstructured":"Zhang, X., Cao, J., Shen, C., You, M.: Self-training with progressive augmentation for unsupervised cross-domain person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8222\u20138231 (2019)","DOI":"10.1109\/ICCV.2019.00831"},{"key":"3_CR61","doi-asserted-by":"crossref","unstructured":"Huang, Y., Wu, Q., Xu, J., Zhong, Y.: SBSGAN: suppression of inter-domain background shift for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9527\u20139536 (2019)","DOI":"10.1109\/ICCV.2019.00962"},{"key":"3_CR62","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"772","DOI":"10.1007\/978-3-030-01225-0_45","volume-title":"Computer Vision \u2013 ECCV 2018","author":"M Li","year":"2018","unstructured":"Li, M., Zhu, X., Gong, S.: Unsupervised person re-identification by deep learning tracklet association. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 772\u2013788. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01225-0_45"},{"key":"3_CR63","doi-asserted-by":"publisher","first-page":"1770","DOI":"10.1109\/TPAMI.2019.2903058","volume":"42","author":"M Li","year":"2019","unstructured":"Li, M., Zhu, X., Gong, S.: Unsupervised tracklet person re-identification. IEEE Trans. Pattern Anal. Machine Intell. 42, 1770\u20131782 (2019)","journal-title":"IEEE Trans. Pattern Anal. Machine Intell."}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ACCV 2020"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-69532-3_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,19]],"date-time":"2022-12-19T02:29:50Z","timestamp":1671416990000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-69532-3_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030695316","9783030695323"],"references-count":63,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-69532-3_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"27 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kyoto","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 December 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"accv2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/accv2020.kyoto\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"768","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"254","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}