{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T13:21:35Z","timestamp":1726147295776},"publisher-location":"Cham","reference-count":51,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030695316"},{"type":"electronic","value":"9783030695323"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-69532-3_12","type":"book-chapter","created":{"date-parts":[[2021,2,26]],"date-time":"2021-02-26T03:04:33Z","timestamp":1614308673000},"page":"185-201","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Restoring Spatially-Heterogeneous Distortions Using Mixture of Experts Network"],"prefix":"10.1007","author":[{"given":"Sijin","family":"Kim","sequence":"first","affiliation":[]},{"given":"Namhyuk","family":"Ahn","sequence":"additional","affiliation":[]},{"given":"Kyung-Ah","family":"Sohn","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,27]]},"reference":[{"key":"12_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1007\/978-3-319-10593-2_13","volume-title":"Computer Vision \u2013 ECCV 2014","author":"C Dong","year":"2014","unstructured":"Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184\u2013199. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10593-2_13"},{"doi-asserted-by":"crossref","unstructured":"Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646\u20131654 (2016)","key":"12_CR2","DOI":"10.1109\/CVPR.2016.182"},{"doi-asserted-by":"crossref","unstructured":"Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136\u2013144 (2017)","key":"12_CR3","DOI":"10.1109\/CVPRW.2017.151"},{"doi-asserted-by":"crossref","unstructured":"Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 252\u2013268 (2018)","key":"12_CR4","DOI":"10.1007\/978-3-030-01249-6_16"},{"doi-asserted-by":"crossref","unstructured":"Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286\u2013301 (2018)","key":"12_CR5","DOI":"10.1007\/978-3-030-01234-2_18"},{"doi-asserted-by":"crossref","unstructured":"Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3155\u20133164 (2019)","key":"12_CR6","DOI":"10.1109\/ICCV.2019.00325"},{"doi-asserted-by":"crossref","unstructured":"Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., Barron, J.T.: Unprocessing images for learned raw denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11036\u201311045 (2019)","key":"12_CR7","DOI":"10.1109\/CVPR.2019.01129"},{"doi-asserted-by":"crossref","unstructured":"Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2392\u20132399. IEEE (2012)","key":"12_CR8","DOI":"10.1109\/CVPR.2012.6247952"},{"key":"12_CR9","doi-asserted-by":"publisher","first-page":"4608","DOI":"10.1109\/TIP.2018.2839891","volume":"27","author":"K Zhang","year":"2018","unstructured":"Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27, 4608\u20134622 (2018)","journal-title":"IEEE Trans. Image Process."},{"key":"12_CR10","doi-asserted-by":"publisher","first-page":"3142","DOI":"10.1109\/TIP.2017.2662206","volume":"26","author":"K Zhang","year":"2017","unstructured":"Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142\u20133155 (2017)","journal-title":"IEEE Trans. Image Process."},{"doi-asserted-by":"crossref","unstructured":"Kumar, N., Nallamothu, R., Sethi, A.: Neural network based image deblurring. In: 11th Symposium on Neural Network Applications in Electrical Engineering, pp. 219\u2013222. IEEE (2012)","key":"12_CR11","DOI":"10.1109\/NEUREL.2012.6420015"},{"doi-asserted-by":"crossref","unstructured":"Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883\u20133891 (2017)","key":"12_CR12","DOI":"10.1109\/CVPR.2017.35"},{"doi-asserted-by":"crossref","unstructured":"Zhang, J., et al.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2521\u20132529 (2018)","key":"12_CR13","DOI":"10.1109\/CVPR.2018.00267"},{"doi-asserted-by":"crossref","unstructured":"Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","key":"12_CR14","DOI":"10.1109\/CVPR.2018.00854"},{"doi-asserted-by":"crossref","unstructured":"Yu, K., Dong, C., Lin, L., Change Loy, C.: Crafting a toolchain for image restoration by deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2443\u20132452 (2018)","key":"12_CR15","DOI":"10.1109\/CVPR.2018.00259"},{"unstructured":"Liu, X., Suganuma, M., Luo, X., Okatani, T.: Restoring images with unknown degradation factors by recurrent use of a multi-branch network. arXiv preprint arXiv:1907.04508 (2019)","key":"12_CR16"},{"doi-asserted-by":"crossref","unstructured":"Suganuma, M., Liu, X., Okatani, T.: Attention-based adaptive selection of operations for image restoration in the presence of unknown combined distortions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9039\u20139048 (2019)","key":"12_CR17","DOI":"10.1109\/CVPR.2019.00925"},{"unstructured":"Yu, K., Wang, X., Dong, C., Tang, X., Loy, C.C.: Path-restore: learning network path selection for image restoration. arXiv preprint arXiv:1904.10343 (2019)","key":"12_CR18"},{"doi-asserted-by":"crossref","unstructured":"Ahn, N., Kang, B., Sohn, K.A.: Image distortion detection using convolutional neural network. In: 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 220\u2013225. IEEE (2017)","key":"12_CR19","DOI":"10.1109\/ACPR.2017.95"},{"unstructured":"Savarese, P., Maire, M.: Learning implicitly recurrent CNNs through parameter sharing. arXiv preprint arXiv:1902.09701 (2019)","key":"12_CR20"},{"key":"12_CR21","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1023\/A:1007379606734","volume":"28","author":"R Caruana","year":"1997","unstructured":"Caruana, R.: Multitask learning. Mach. Learn. 28, 41\u201375 (1997)","journal-title":"Mach. Learn."},{"unstructured":"Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)","key":"12_CR22"},{"key":"12_CR23","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1162\/neco.1991.3.1.79","volume":"3","author":"RA Jacobs","year":"1991","unstructured":"Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3, 79\u201387 (1991)","journal-title":"Neural Comput."},{"doi-asserted-by":"crossref","unstructured":"Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994\u20134003 (2016)","key":"12_CR24","DOI":"10.1109\/CVPR.2016.433"},{"key":"12_CR25","doi-asserted-by":"publisher","first-page":"2080","DOI":"10.1109\/TIP.2007.901238","volume":"16","author":"K Dabov","year":"2007","unstructured":"Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080\u20132095 (2007)","journal-title":"IEEE Trans. Image Process."},{"key":"12_CR26","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1007\/s11263-008-0197-6","volume":"82","author":"S Roth","year":"2009","unstructured":"Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vision 82, 205 (2009)","journal-title":"Int. J. Comput. Vision"},{"key":"12_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"391","DOI":"10.1007\/978-3-319-46475-6_25","volume-title":"Computer Vision \u2013 ECCV 2016","author":"C Dong","year":"2016","unstructured":"Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391\u2013407. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46475-6_25"},{"doi-asserted-by":"crossref","unstructured":"Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681\u20134690 (2017)","key":"12_CR28","DOI":"10.1109\/CVPR.2017.19"},{"doi-asserted-by":"crossref","unstructured":"Feng, R., Gu, J., Qiao, Y., Dong, C.: Suppressing model overfitting for image super-resolution networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)","key":"12_CR29","DOI":"10.1109\/CVPRW.2019.00248"},{"doi-asserted-by":"crossref","unstructured":"Yoo, J., Ahn, N., Sohn, K.A.: Rethinking data augmentation for image super-resolution: a comprehensive analysis and a new strategy. arXiv preprint arXiv:2004.00448 (2020)","key":"12_CR30","DOI":"10.1109\/CVPR42600.2020.00840"},{"doi-asserted-by":"crossref","unstructured":"Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1712\u20131722 (2019)","key":"12_CR31","DOI":"10.1109\/CVPR.2019.00181"},{"doi-asserted-by":"crossref","unstructured":"Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3086\u20133095 (2019)","key":"12_CR32","DOI":"10.1109\/ICCV.2019.00318"},{"doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969 (2017)","key":"12_CR33","DOI":"10.1109\/ICCV.2017.322"},{"doi-asserted-by":"crossref","unstructured":"Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., Chi, E.H.: Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1930\u20131939 (2018)","key":"12_CR34","DOI":"10.1145\/3219819.3220007"},{"doi-asserted-by":"crossref","unstructured":"Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126\u2013135 (2017)","key":"12_CR35","DOI":"10.1109\/CVPRW.2017.150"},{"doi-asserted-by":"crossref","unstructured":"Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586\u2013595 (2018)","key":"12_CR36","DOI":"10.1109\/CVPR.2018.00068"},{"key":"12_CR37","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1016\/j.image.2014.10.009","volume":"30","author":"N Ponomarenko","year":"2015","unstructured":"Ponomarenko, N., et al.: Image database TID2013: peculiarities, results and perspectives. Sig. Process. Image Commun. 30, 57\u201377 (2015)","journal-title":"Sig. Process. Image Commun."},{"key":"12_CR38","doi-asserted-by":"publisher","first-page":"e453","DOI":"10.7717\/peerj.453","volume":"2","author":"S Van der Walt","year":"2014","unstructured":"Van der Walt, S., et al.: Scikit-image: image processing in python. PeerJ 2, e453 (2014)","journal-title":"PeerJ"},{"doi-asserted-by":"crossref","unstructured":"Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624\u2013632 (2017)","key":"12_CR39","DOI":"10.1109\/CVPR.2017.618"},{"key":"12_CR40","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","volume":"38","author":"C Dong","year":"2015","unstructured":"Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295\u2013307 (2015)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","key":"12_CR41","DOI":"10.1109\/CVPR.2016.90"},{"unstructured":"Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative multi-column convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 331\u2013340 (2018)","key":"12_CR42"},{"doi-asserted-by":"crossref","unstructured":"Ren, H., El-Khamy, M., Lee, J.: Image super resolution based on fusing multiple convolution neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 54\u201361 (2017)","key":"12_CR43","DOI":"10.1109\/CVPRW.2017.142"},{"doi-asserted-by":"crossref","unstructured":"Du, X., El-Khamy, M., Lee, J., Davis, L.: Fused DNN: a deep neural network fusion approach to fast and robust pedestrian detection. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 953\u2013961. IEEE (2017)","key":"12_CR44","DOI":"10.1109\/WACV.2017.111"},{"doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141 (2018)","key":"12_CR45","DOI":"10.1109\/CVPR.2018.00745"},{"doi-asserted-by":"crossref","unstructured":"Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3\u201319 (2018)","key":"12_CR46","DOI":"10.1007\/978-3-030-01234-2_1"},{"unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)","key":"12_CR47"},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026\u20131034 (2015)","key":"12_CR48","DOI":"10.1109\/ICCV.2015.123"},{"unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91\u201399 (2015)","key":"12_CR49"},{"key":"12_CR50","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"doi-asserted-by":"crossref","unstructured":"Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4799\u20134807 (2017)","key":"12_CR51","DOI":"10.1109\/ICCV.2017.514"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ACCV 2020"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-69532-3_12","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,2,26]],"date-time":"2021-02-26T03:18:52Z","timestamp":1614309532000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-69532-3_12"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030695316","9783030695323"],"references-count":51,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-69532-3_12","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"27 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kyoto","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 December 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"accv2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/accv2020.kyoto\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"768","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"254","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}