{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:11:29Z","timestamp":1726762289795},"publisher-location":"Cham","reference-count":42,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030695248"},{"type":"electronic","value":"9783030695255"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-69525-5_39","type":"book-chapter","created":{"date-parts":[[2021,2,26]],"date-time":"2021-02-26T16:21:16Z","timestamp":1614356476000},"page":"654-671","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Bidirectional Pyramid Networks for Semantic Segmentation"],"prefix":"10.1007","author":[{"given":"Dong","family":"Nie","sequence":"first","affiliation":[]},{"given":"Jia","family":"Xue","sequence":"additional","affiliation":[]},{"given":"Xiaofeng","family":"Ren","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,27]]},"reference":[{"key":"39_CR1","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431\u20133440 (2015)","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"39_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"39_CR3","doi-asserted-by":"crossref","unstructured":"Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565\u2013571. IEEE (2016)","DOI":"10.1109\/3DV.2016.79"},{"key":"39_CR4","unstructured":"Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)"},{"key":"39_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-00889-5_1","volume-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","author":"Z Zhou","year":"2018","unstructured":"Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA\/ML-CDS -2018. LNCS, vol. 11045, pp. 3\u201311. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00889-5_1"},{"key":"39_CR6","doi-asserted-by":"crossref","unstructured":"Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925\u20131934 (2017)","DOI":"10.1109\/CVPR.2017.549"},{"key":"39_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1007\/978-3-540-88682-2_5","volume-title":"Computer Vision \u2013 ECCV 2008","author":"GJ Brostow","year":"2008","unstructured":"Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition using structure from motion point clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 44\u201357. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-88682-2_5"},{"key":"39_CR8","doi-asserted-by":"crossref","unstructured":"Mottaghi, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 891\u2013898 (2014)","DOI":"10.1109\/CVPR.2014.119"},{"key":"39_CR9","unstructured":"Sun, K., et al.: High-resolution representations for labeling pixels and regions. arXiv preprint arXiv:1904.04514 (2019)"},{"key":"39_CR10","first-page":"359","volume":"18","author":"G Litjens","year":"2014","unstructured":"Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. MedIA 18, 359\u2013373 (2014)","journal-title":"MedIA"},{"key":"39_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1007\/978-3-319-46448-0_5","volume-title":"Computer Vision \u2013 ECCV 2016","author":"PO Pinheiro","year":"2016","unstructured":"Pinheiro, P.O., Lin, T.-Y., Collobert, R., Doll\u00e1r, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75\u201391. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_5"},{"key":"39_CR12","doi-asserted-by":"crossref","unstructured":"Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759\u20138768 (2018)","DOI":"10.1109\/CVPR.2018.00913"},{"key":"39_CR13","doi-asserted-by":"crossref","unstructured":"Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. arXiv preprint arXiv:1911.09070 (2019)","DOI":"10.1109\/CVPR42600.2020.01079"},{"key":"39_CR14","doi-asserted-by":"crossref","unstructured":"Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881\u20132890 (2017)","DOI":"10.1109\/CVPR.2017.660"},{"key":"39_CR15","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"LC Chen","year":"2017","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834\u2013848 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"39_CR16","doi-asserted-by":"crossref","unstructured":"Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794\u20137803 (2018)","DOI":"10.1109\/CVPR.2018.00813"},{"key":"39_CR17","unstructured":"Yuan, Y., Wang, J.: OCNet: object context network for scene parsing. arXiv preprint arXiv:1809.00916 (2018)"},{"key":"39_CR18","doi-asserted-by":"crossref","unstructured":"Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3146\u20133154 (2019)","DOI":"10.1109\/CVPR.2019.00326"},{"key":"39_CR19","doi-asserted-by":"crossref","unstructured":"Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 603\u2013612 (2019)","DOI":"10.1109\/ICCV.2019.00069"},{"key":"39_CR20","doi-asserted-by":"crossref","unstructured":"Zhu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural networks for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 593\u2013602 (2019)","DOI":"10.1109\/ICCV.2019.00068"},{"key":"39_CR21","doi-asserted-by":"crossref","unstructured":"Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., Liu, H.: Expectation-maximization attention networks for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9167\u20139176 (2019)","DOI":"10.1109\/ICCV.2019.00926"},{"key":"39_CR22","unstructured":"Li, X., Zhao, H., Han, L., Tong, Y., Yang, K.: GFF: gated fully fusion for semantic segmentation. arXiv preprint arXiv:1904.01803 (2019)"},{"key":"39_CR23","unstructured":"Li, X., Zhang, L., You, A., Yang, M., Yang, K., Tong, Y.: Global aggregation then local distribution in fully convolutional networks. arXiv preprint arXiv:1909.07229 (2019)"},{"key":"39_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"418","DOI":"10.1007\/978-3-030-01219-9_25","volume-title":"Computer Vision \u2013 ECCV 2018","author":"H Zhao","year":"2018","unstructured":"Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 418\u2013434. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01219-9_25"},{"key":"39_CR25","doi-asserted-by":"crossref","unstructured":"Li, H., Xiong, P., Fan, H., Sun, J.: DFANet: deep feature aggregation for real-time semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9522\u20139531 (2019)","DOI":"10.1109\/CVPR.2019.00975"},{"key":"39_CR26","doi-asserted-by":"crossref","unstructured":"Li, X., Zhou, Y., Pan, Z., Feng, J.: Partial order pruning: for best speed\/accuracy trade-off in neural architecture search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9145\u20139153 (2019)","DOI":"10.1109\/CVPR.2019.00936"},{"key":"39_CR27","doi-asserted-by":"crossref","unstructured":"Orsic, M., Kreso, I., Bevandic, P., Segvic, S.: In defense of pre-trained imagenet architectures for real-time semantic segmentation of road-driving images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12607\u201312616 (2019)","DOI":"10.1109\/CVPR.2019.01289"},{"key":"39_CR28","doi-asserted-by":"crossref","unstructured":"Howard, A., et al.: Searching for MobileNetV3. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1314\u20131324 (2019)","DOI":"10.1109\/ICCV.2019.00140"},{"key":"39_CR29","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"334","DOI":"10.1007\/978-3-030-01261-8_20","volume-title":"Computer Vision \u2013 ECCV 2018","author":"C Yu","year":"2018","unstructured":"Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334\u2013349. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01261-8_20"},{"key":"39_CR30","doi-asserted-by":"crossref","unstructured":"Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995\u20131000. IEEE (2010)","DOI":"10.1109\/ICDM.2010.127"},{"key":"39_CR31","unstructured":"Yu, C.: Torchseg (2019). https:\/\/github.com\/ycszen\/TorchSeg"},{"key":"39_CR32","doi-asserted-by":"crossref","unstructured":"Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213\u20133223 (2016)","DOI":"10.1109\/CVPR.2016.350"},{"key":"39_CR33","doi-asserted-by":"crossref","unstructured":"Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a discriminative feature network for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1857\u20131866 (2018)","DOI":"10.1109\/CVPR.2018.00199"},{"key":"39_CR34","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"833","DOI":"10.1007\/978-3-030-01234-2_49","volume-title":"Computer Vision \u2013 ECCV 2018","author":"L-C Chen","year":"2018","unstructured":"Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833\u2013851. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_49"},{"key":"39_CR35","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1007\/978-3-030-01240-3_17","volume-title":"Computer Vision \u2013 ECCV 2018","author":"H Zhao","year":"2018","unstructured":"Zhao, H., et al.: PSANet: point-wise spatial attention network for scene parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 270\u2013286. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01240-3_17"},{"key":"39_CR36","doi-asserted-by":"crossref","unstructured":"Xu, D., Ouyang, W., Wang, X., Sebe, N.: PAD-Net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 675\u2013684 (2018)","DOI":"10.1109\/CVPR.2018.00077"},{"key":"39_CR37","doi-asserted-by":"crossref","unstructured":"Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3684\u20133692 (2018)","DOI":"10.1109\/CVPR.2018.00388"},{"key":"39_CR38","unstructured":"Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065 (2019)"},{"key":"39_CR39","doi-asserted-by":"crossref","unstructured":"Fourure, D., Emonet, R., Fromont, E., Muselet, D., Tremeau, A., Wolf, C.: Residual conv-deconv grid network for semantic segmentation. arXiv preprint arXiv:1707.07958 (2017)","DOI":"10.5244\/C.31.181"},{"key":"39_CR40","doi-asserted-by":"publisher","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","volume":"39","author":"V Badrinarayanan","year":"2017","unstructured":"Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481\u20132495 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"39_CR41","doi-asserted-by":"crossref","unstructured":"Ding, H., Jiang, X., Shuai, B., Liu, A.Q., Wang, G.: Context contrasted feature and gated multi-scale aggregation for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2393\u20132402 (2018)","DOI":"10.1109\/CVPR.2018.00254"},{"key":"39_CR42","doi-asserted-by":"crossref","unstructured":"Zhang, H., et al.: Context encoding for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7151\u20137160 (2018)","DOI":"10.1109\/CVPR.2018.00747"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ACCV 2020"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-69525-5_39","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,2,26]],"date-time":"2021-02-26T17:12:36Z","timestamp":1614359556000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-69525-5_39"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030695248","9783030695255"],"references-count":42,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-69525-5_39","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"27 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kyoto","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 December 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"accv2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/accv2020.kyoto\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"768","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"254","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}