{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T07:31:31Z","timestamp":1742974291404,"version":"3.40.3"},"publisher-location":"Cham","reference-count":31,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030693763"},{"type":"electronic","value":"9783030693770"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-69377-0_10","type":"book-chapter","created":{"date-parts":[[2021,2,10]],"date-time":"2021-02-10T04:59:40Z","timestamp":1612933180000},"page":"111-124","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Optimal Placement of Taxis in a City Using Dominating Set Problem"],"prefix":"10.1007","author":[{"given":"Saurabh","family":"Mishra","sequence":"first","affiliation":[]},{"given":"Sonia","family":"Khetarpaul","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,10]]},"reference":[{"issue":"4","key":"10_CR1","doi-asserted-by":"publisher","first-page":"3680","DOI":"10.1109\/TVT.2020.2978450","volume":"69","author":"H Yu","year":"2020","unstructured":"Yu, H., Li, Z., Zhang, G., Liu, P., Wang, J.: Extracting and predicting taxi hotspots in spatiotemporal dimensions using conditional generative adversarial neural networks. IEEE Trans. Veh. Technol. 69(4), 3680\u20133692 (2020)","journal-title":"IEEE Trans. Veh. Technol."},{"key":"10_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1007\/978-3-030-39469-1_3","volume-title":"Databases Theory and Applications","author":"M Li","year":"2020","unstructured":"Li, M., He, D., Zhou, X.: Efficient kNN search with occupation in large-scale on-demand ride-hailing. In: Borovica-Gajic, R., Qi, J., Wang, W. (eds.) ADC 2020. LNCS, vol. 12008, pp. 29\u201341. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-39469-1_3"},{"key":"10_CR3","doi-asserted-by":"crossref","unstructured":"Zhou, D., Hong, R., Xia, J.: Identification of taxi pick-up and drop-off hotspots using the density-based spatial clustering method. In: CICTP 2017: Transportation Reform and Change-Equity, Inclusiveness, Sharing, and Innovation, pp. 196\u2013204. American Society of Civil Engineers, Reston (2017)","DOI":"10.1061\/9780784480915.020"},{"issue":"1","key":"10_CR4","first-page":"3","volume":"5","author":"HW Chang","year":"2010","unstructured":"Chang, H.W., Tai, Y.C., Hsu, J.Y.J.: Context-aware taxi demand hotspots prediction. Int. J. Bus. Intell. Data Min. 5(1), 3\u201318 (2010)","journal-title":"Int. J. Bus. Intell. Data Min."},{"key":"10_CR5","doi-asserted-by":"crossref","unstructured":"Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: SIGMOD, pp. 301\u2013312 (2003)","DOI":"10.1145\/872757.872795"},{"key":"10_CR6","doi-asserted-by":"crossref","unstructured":"Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: WWW, pp. 613\u2013622 (2001)","DOI":"10.1145\/371920.372165"},{"key":"10_CR7","doi-asserted-by":"crossref","unstructured":"Mamoulis, N., Cheng, K.H., Yiu, M.L., Cheung, D.W.: Efficient aggregation of ranked inputs. In: ICDE, pp. 72\u201384 (2006)","DOI":"10.1109\/ICDE.2006.54"},{"issue":"5","key":"10_CR8","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1145\/1411509.1411513","volume":"55","author":"N Ailon","year":"2008","unstructured":"Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), 23 (2008)","journal-title":"J. ACM"},{"issue":"1","key":"10_CR9","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1145\/2756547","volume":"59","author":"S Shekhar","year":"2016","unstructured":"Shekhar, S., Feiner, S.K., Aref, W.G.: Spatial computing. Commun. ACM 59(1), 72\u201381 (2016)","journal-title":"Commun. ACM"},{"issue":"3","key":"10_CR10","doi-asserted-by":"publisher","first-page":"424","DOI":"10.1016\/j.is.2005.12.001","volume":"32","author":"Y Tao","year":"2007","unstructured":"Tao, Y., Hristidis, V., Papadias, D., Papakonstantinou, Y.: Branch-and-bound processing of ranked queries. Inf. Syst. 32(3), 424\u2013445 (2007)","journal-title":"Inf. Syst."},{"key":"10_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"435","DOI":"10.1007\/978-3-319-46922-5_34","volume-title":"Databases Theory and Applications","author":"M Li","year":"2016","unstructured":"Li, M., Bao, Z., Sellis, T., Yan, S.: Visualization-aided exploration of the real estate data. In: Cheema, M.A., Zhang, W., Chang, L. (eds.) ADC 2016. LNCS, vol. 9877, pp. 435\u2013439. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46922-5_34"},{"key":"10_CR12","doi-asserted-by":"crossref","unstructured":"Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over sliding windows. In: SIGMOD, pp. 635\u2013646 (2006)","DOI":"10.1145\/1142473.1142544"},{"issue":"2","key":"10_CR13","first-page":"1530","volume":"1","author":"G Cormode","year":"2008","unstructured":"Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. PVLDB 1(2), 1530\u20131541 (2008)","journal-title":"PVLDB"},{"issue":"10","key":"10_CR14","first-page":"992","volume":"5","author":"O Papapetrou","year":"2012","unstructured":"Papapetrou, O., Garofalakis, M., Deligiannakis, A.: Sketch-based querying of distributed sliding-window data streams. PVLDB 5(10), 992\u20131003 (2012)","journal-title":"PVLDB"},{"key":"10_CR15","doi-asserted-by":"crossref","unstructured":"Bohm, C., Ooi, B.C., Plant, C., Yan, Y.: Efficiently processing continuous k-NN queries on data streams. In: ICDE, pp. 156\u2013165 (2007)","DOI":"10.1109\/ICDE.2007.367861"},{"key":"10_CR16","doi-asserted-by":"crossref","unstructured":"Korn, F., Muthukrishnan, S., Srivastava, D.: Reverse nearest neighbor aggregates over data streams. In: PVLDB, pp. 814\u2013825 (2002)","DOI":"10.1016\/B978-155860869-6\/50077-9"},{"issue":"2","key":"10_CR17","first-page":"113","volume":"8","author":"C Li","year":"2014","unstructured":"Li, C., Gu, Y., Qi, J., Yu, G., Zhang, R., Yi, W.: Processing moving KNN queries using influential neighbor sets. PVLDB 8(2), 113\u2013124 (2014)","journal-title":"PVLDB"},{"issue":"1","key":"10_CR18","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/s00778-011-0235-9","volume":"21","author":"M Cheema","year":"2012","unstructured":"Cheema, M., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest neighbors queries in Euclidean space and in spatial networks. VLDB J. 21(1), 69\u201395 (2012). https:\/\/doi.org\/10.1007\/s00778-011-0235-9","journal-title":"VLDB J."},{"key":"10_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1007\/978-3-319-19548-3_12","volume-title":"Databases Theory and Applications","author":"S Khetarpaul","year":"2015","unstructured":"Khetarpaul, S., Gupta, S.K., Malhotra, S., Subramaniam, L.V.: Bus arrival time prediction using a modified amalgamation of fuzzy clustering and neural network on spatio-temporal data. In: Sharaf, M.A., Cheema, M.A., Qi, J. (eds.) ADC 2015. LNCS, vol. 9093, pp. 142\u2013154. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-19548-3_12"},{"key":"10_CR20","unstructured":"Xia, T., Zhang, D., Kanoulas, E., Du, Y.: On computing top-t most influential spatial sites. In: PVLDB, pp. 946\u2013957 (2005)"},{"key":"10_CR21","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1016\/j.is.2014.01.001","volume":"42","author":"C-L Li","year":"2014","unstructured":"Li, C.-L., Wang, E.T., Huang, G.-J., Chen, A.L.P.: Top-n query processing in spatial databases considering bi-chromatic reverse k-nearest neighbors. Inf. Syst. 42, 123\u2013138 (2014)","journal-title":"Inf. Syst."},{"issue":"4","key":"10_CR22","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1007\/s00778-013-0336-8","volume":"23","author":"J-L Koh","year":"2014","unstructured":"Koh, J.-L., Lin, C.-Y., Chen, A.P.: Finding k most favorite products based on reverse top-t queries. PVLDB 23(4), 541\u2013564 (2014). https:\/\/doi.org\/10.1007\/s00778-013-0336-8","journal-title":"PVLDB"},{"issue":"1\u20132","key":"10_CR23","first-page":"364","volume":"3","author":"A Vlachou","year":"2010","unstructured":"Vlachou, A., Doulkeridis, C., N\u00f8rv\u00e5g, K., Kotidis, Y.: Identifying the most influential data objects with reverse top-k queries. PVLDB 3(1\u20132), 364\u2013372 (2010)","journal-title":"PVLDB"},{"issue":"1","key":"10_CR24","first-page":"1126","volume":"2","author":"RC-W Wong","year":"2009","unstructured":"Wong, R.C.-W., \u00d6zsu, M.T., Yu, P.S., Fu, A.W.-C., Liu, L.: Efficient method for maximizing bichromatic reverse nearest neighbor. PVLDB 2(1), 1126\u20131137 (2009)","journal-title":"PVLDB"},{"key":"10_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"110","DOI":"10.1007\/978-3-642-40235-7_7","volume-title":"Advances in Spatial and Temporal Databases","author":"O Gkorgkas","year":"2013","unstructured":"Gkorgkas, O., Vlachou, A., Doulkeridis, C., N\u00f8rv\u00e5g, K.: Discovering influential data objects over time. In: Nascimento, M.A., et al. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 110\u2013127. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-40235-7_7"},{"key":"10_CR26","unstructured":"Choudhury, F.M., Bao, Z., Culpepper, J.S., Sellis, T.: Monitoring the top-m aggregation in a sliding window of spatial queries (2016)"},{"key":"10_CR27","first-page":"1","volume":"13","author":"E Sampathkumar","year":"1979","unstructured":"Sampathkumar, E., Walikar, H.B.: Connected domination number of a graph. J. Math. Phys. 13, 1\u20137 (1979)","journal-title":"J. Math. Phys."},{"issue":"19","key":"10_CR28","doi-asserted-by":"publisher","first-page":"3647","DOI":"10.1016\/j.ins.2010.06.009","volume":"180","author":"C Pang","year":"2010","unstructured":"Pang, C., Zhang, R., Zhang, Q., Wang, J.: Dominating sets in directed graphs. Inf. Sci. 180(19), 3647\u20133652 (2010)","journal-title":"Inf. Sci."},{"issue":"6","key":"10_CR29","doi-asserted-by":"publisher","first-page":"973","DOI":"10.1109\/TNN.2009.2015088","volume":"20","author":"H He","year":"2009","unstructured":"He, H., Zhu, Z., Makinen, E.: A neural network model to minimize the connected dominating set for self-configuration of wireless sensor networks. IEEE Trans. Neural Netw. 20(6), 973\u2013982 (2009)","journal-title":"IEEE Trans. Neural Netw."},{"key":"10_CR30","unstructured":"http:\/\/users.diag.uniroma1.it\/challenge9\/download.shtml"},{"key":"10_CR31","unstructured":"https:\/\/www1.nyc.gov\/site\/tlc\/about\/tlc-trip-record-data.page"}],"container-title":["Lecture Notes in Computer Science","Databases Theory and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-69377-0_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,2,10]],"date-time":"2021-02-10T05:05:45Z","timestamp":1612933545000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-69377-0_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030693763","9783030693770"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-69377-0_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"10 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australasian Database Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Dunedin","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"New Zealand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 January 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 February 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"32","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adc2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adc2021.github.io\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy Chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"16","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"76% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}