{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T15:18:36Z","timestamp":1726240716337},"publisher-location":"Cham","reference-count":42,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030687953"},{"type":"electronic","value":"9783030687960"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-68796-0_2","type":"book-chapter","created":{"date-parts":[[2021,2,20]],"date-time":"2021-02-20T16:28:24Z","timestamp":1613838504000},"page":"20-34","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Post-hoc Explanation Options for XAI in Deep Learning: The Insight Centre for Data Analytics Perspective"],"prefix":"10.1007","author":[{"given":"Eoin M.","family":"Kenny","sequence":"first","affiliation":[]},{"given":"Eoin D.","family":"Delaney","sequence":"additional","affiliation":[]},{"given":"Derek","family":"Greene","sequence":"additional","affiliation":[]},{"given":"Mark T.","family":"Keane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,21]]},"reference":[{"key":"2_CR1","unstructured":"Ala-Pietil\u00e4, P.: Landline - 10\/10\/20: High-Level Expert Group on Artificial Intelligence. https:\/\/ec.europa.eu\/digital-single-market\/en\/high-level-expert-group-artificial-intelligence"},{"key":"2_CR2","doi-asserted-by":"crossref","unstructured":"Ates, E., et al.: Counterfactual explanations for machine learning on multivariate time series data. arXiv:2008.10781 (2020)","DOI":"10.1109\/ICAPAI49758.2021.9462056"},{"key":"2_CR3","doi-asserted-by":"crossref","unstructured":"Bagnall, A., et al.: The great time series classification bake off: an experimental evaluation of recently proposed algorithms. Extended Version. arXiv:1602.01711 (2016)","DOI":"10.1007\/s10618-016-0483-9"},{"key":"2_CR4","doi-asserted-by":"crossref","unstructured":"Byrne, R.M.J.: Counterfactuals in explainable artificial intelligence (XAI): evidence from human reasoning. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019) (2019)","DOI":"10.24963\/ijcai.2019\/876"},{"key":"2_CR5","unstructured":"Chen, C., et al.: This looks like that. In: NeurIPS (2020)"},{"key":"2_CR6","doi-asserted-by":"crossref","unstructured":"Dau, H.A., et al.: The UCR time series archive. arXiv:1810.07758 (2019)","DOI":"10.1109\/JAS.2019.1911747"},{"key":"2_CR7","doi-asserted-by":"crossref","unstructured":"Delaney, E., et al.: Instance-based counterfactual explanations for time series classification. arXiv:2009.13211 (2020)","DOI":"10.1007\/978-3-030-86957-1_3"},{"key":"2_CR8","unstructured":"Ford, C., et al.: Play MNIST for me! User studies on the effects of post-hoc, example-based explanations & error rates on debugging a deep learning, black-box classifier. In: IJCAI 2020 XAI Workshop (2020)"},{"key":"2_CR9","doi-asserted-by":"crossref","unstructured":"Forestier, G., et al.: Generating synthetic time series to augment sparse datasets. In: 2017 IEEE International Conference on Data Mining (2017)","DOI":"10.1109\/ICDM.2017.106"},{"key":"2_CR10","unstructured":"Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv:1711.09784 (2017)"},{"key":"2_CR11","doi-asserted-by":"crossref","unstructured":"Gilpin, L.H., et al.: Explaining explanations: an approach to evaluating interpretability of machine learning. arXiv:1806.00069 (2018)","DOI":"10.1109\/DSAA.2018.00018"},{"key":"2_CR12","unstructured":"Hahn, T.: Landline - 10\/10\/20: Strategic Research, Innovation and Deployment Agenda. https:\/\/ai-data-robotics-partnership.eu\/wp-content\/uploads\/2020\/09\/AI-Data-Robotics-Partnership-SRIDA-V3.0.pdf"},{"key":"2_CR13","doi-asserted-by":"crossref","unstructured":"Karlsson, I., et al.: Explainable time series tweaking via irreversible and reversible temporal transformations. arXiv:1809.05183 (2018)","DOI":"10.1109\/ICDM.2018.00036"},{"key":"2_CR14","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1007\/978-3-030-29249-2_11","volume-title":"Case-Based Reasoning Research and Development","author":"M Keane","year":"2019","unstructured":"Keane, M., Kenny, E.: How case-based reasoning explains neural networks: a theoretical analysis of XAI using post-hoc explanation-by-example from a survey of ANN-CBR twin-systems. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 155\u2013171. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-29249-2_11"},{"key":"2_CR15","unstructured":"Keane, M.T., Kenny, E.M.: The twin-system approach as one generic solution for XAI. In: IJCAI 2019 XAI Workshop (2019)"},{"key":"2_CR16","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1007\/978-3-030-58342-2_11","volume-title":"Case-Based Reasoning Research and Development","author":"MT Keane","year":"2020","unstructured":"Keane, M.T., Smyth, B.: Good counterfactuals and where to find them: a case-based technique for generating counterfactuals for explainable AI (XAI). In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 163\u2013178. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58342-2_11"},{"key":"2_CR17","doi-asserted-by":"crossref","unstructured":"Kenny, E.M., et al.: Bayesian case-exclusion and personalized explanations for sustainable dairy farming. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI 2020) (2020)","DOI":"10.24963\/ijcai.2020\/657"},{"key":"2_CR18","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"172","DOI":"10.1007\/978-3-030-29249-2_12","volume-title":"Case-Based Reasoning Research and Development","author":"E Kenny","year":"2019","unstructured":"Kenny, E., et al.: Predicting grass growth for sustainable dairy farming: a CBR system using Bayesian case-exclusion and post-hoc, personalized explanation-by-example (XAI). In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 172\u2013187. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-29249-2_12"},{"key":"2_CR19","doi-asserted-by":"crossref","unstructured":"Kenny, E.M., Keane, M.T.: On generating plausible counterfactual and semi-factual explanations for deep learning. arXiv:2009.06399 (2020)","DOI":"10.1609\/aaai.v35i13.17377"},{"key":"2_CR20","doi-asserted-by":"crossref","unstructured":"Kenny, E.M., Keane, M.T.: Twin-systems to explain artificial neural networks using case-based reasoning. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019) (2019)","DOI":"10.24963\/ijcai.2019\/376"},{"key":"2_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1007\/978-3-030-59065-9_19","volume-title":"Big Data Analytics and Knowledge Discovery","author":"J Labaien","year":"2020","unstructured":"Labaien, J., Zugasti, E., De Carlos, X.: Contrastive explanations for a deep learning model on time-series data. In: Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2020. LNCS, vol. 12393, pp. 235\u2013244. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59065-9_19"},{"key":"2_CR22","unstructured":"Laugel, T., et al.: Defining locality for surrogates in post-hoc interpretablity. arXiv:1806.07498 (2018)"},{"key":"2_CR23","doi-asserted-by":"crossref","unstructured":"Laugel, T., et al.: The dangers of post-hoc interpretability: unjustified counterfactual explanations. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI 2019) (2019)","DOI":"10.24963\/ijcai.2019\/388"},{"key":"2_CR24","unstructured":"Leavy, S., et al.: Data, power and bias in artificial intelligence. arXiv:2008.0734 (2020)"},{"key":"2_CR25","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1007\/978-3-030-52485-2_2","volume-title":"Bias and Social Aspects in Search and Recommendation","author":"S Leavy","year":"2020","unstructured":"Leavy, S., Meaney, G., Wade, K., Greene, D.: Mitigating gender bias in machine learning data sets. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds.) BIAS 2020. CCIS, vol. 1245, pp. 12\u201326. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-52485-2_2"},{"key":"2_CR26","unstructured":"Linyi, Y., et al.: Generating plausible counterfactual explanations for deep transformers in financial text classification. In: Proceedings of the 28th International Conference on Computational Linguistics (2020)"},{"key":"2_CR27","unstructured":"Lipton, Z.C.: The mythos of model interpretability. arXiv:1606.03490 (2017)"},{"key":"2_CR28","doi-asserted-by":"crossref","unstructured":"Mittelstadt, B., et al.: Explaining explanations in AI. In: Proceedings of the Conference on Fairness, Accountability, and Transparency (2019)","DOI":"10.1145\/3287560.3287574"},{"key":"2_CR29","doi-asserted-by":"crossref","unstructured":"Mueen, A., Keogh, E.: Extracting optimal performance from dynamic time warping. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)","DOI":"10.1145\/2939672.2945383"},{"key":"2_CR30","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1007\/978-3-030-65742-0_6","volume-title":"Advanced Analytics and Learning on Temporal Data","author":"TT Nguyen","year":"2020","unstructured":"Nguyen, T.T., Le Nguyen, T., Ifrim, G.: A model-agnostic approach to quantifying the informativeness of explanation methods for time series classification. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp. 77\u201394. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-65742-0_6"},{"issue":"3","key":"2_CR31","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1007\/s10844-008-0069-0","volume":"32","author":"C Nugent","year":"2009","unstructured":"Nugent, C., et al.: Gaining insight through case-based explanation. J. Intell. Inf. Syst. 32(3), 267\u2013295 (2009). https:\/\/doi.org\/10.1007\/s10844-008-0069-0","journal-title":"J. Intell. Inf. Syst."},{"key":"2_CR32","unstructured":"O\u2019Sullivan, B.: Landline - 10\/10\/20: Towards a Magna Carta for Data: Expert Opinion Piece: Engineering and Computer Science Committee. https:\/\/www.ria.ie\/sites\/default\/files\/ria_magna_carta_data.pdf"},{"key":"2_CR33","unstructured":"Papernot, N., McDaniel, P.: Deep k-Nearest neighbors: towards confident, interpretable and robust deep learning. arXiv:1803.04765 (2018)"},{"key":"2_CR34","doi-asserted-by":"publisher","first-page":"678","DOI":"10.1016\/j.patcog.2010.09.013","volume":"44","author":"F Petitjean","year":"2011","unstructured":"Petitjean, F., et al.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn. 44, 678\u2013693 (2011)","journal-title":"Pattern Recogn."},{"key":"2_CR35","doi-asserted-by":"crossref","unstructured":"Prabhu, V.U., Birhane, A.: Large image datasets: a pyrrhic win for computer vision? arXiv:2006.16923 (2020)","DOI":"10.1109\/WACV48630.2021.00158"},{"key":"2_CR36","doi-asserted-by":"crossref","unstructured":"Ribeiro, M.T., et al.: \u201cWhy should I trust you?\u201d: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2016 (2016)","DOI":"10.1145\/2939672.2939778"},{"key":"2_CR37","doi-asserted-by":"crossref","unstructured":"Rudin, C.: Please stop explaining black box models for high stakes decisions. arXiv:1811.10154 (2018)","DOI":"10.1038\/s42256-019-0048-x"},{"issue":"2","key":"2_CR38","doi-asserted-by":"publisher","first-page":"514","DOI":"10.1148\/radiol.2018180887","volume":"290","author":"JCY Seah","year":"2019","unstructured":"Seah, J.C.Y., et al.: Chest radiographs in congestive heart failure: visualizing neural network learning. Radiology 290(2), 514\u2013522 (2019)","journal-title":"Radiology"},{"key":"2_CR39","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/s10462-005-4607-7","volume":"24","author":"F S\u00f8rmo","year":"2005","unstructured":"S\u00f8rmo, F., et al.: Explanation in case-based reasoning-perspectives and goals. Artif. Intell. Rev. 24, 109\u2013143 (2005). https:\/\/doi.org\/10.1007\/s10462-005-4607-7","journal-title":"Artif. Intell. Rev."},{"key":"2_CR40","doi-asserted-by":"crossref","unstructured":"Wachter, S., et al.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. SSRN J. 31 (2017)","DOI":"10.2139\/ssrn.3063289"},{"key":"2_CR41","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1007\/978-3-030-27684-3_20","volume-title":"Database and Expert Systems Applications","author":"VAC Horta","year":"2019","unstructured":"Horta, V.A.C., Mileo, A.: Towards explaining deep neural networks through graph analysis. In: Anderst-Kotsis, G., et al. (eds.) DEXA 2019. CCIS, vol. 1062, pp. 155\u2013165. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-27684-3_20"},{"key":"2_CR42","doi-asserted-by":"publisher","first-page":"2674","DOI":"10.1109\/TVCG.2018.2843369","volume":"25","author":"F Hohman","year":"2018","unstructured":"Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual analytics in deep learning. IEEE Trans. Visual. Comput. Graphics 25, 2674\u20132693 (2018)","journal-title":"IEEE Trans. Visual. Comput. Graphics"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition. ICPR International Workshops and Challenges"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-68796-0_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,18]],"date-time":"2022-12-18T09:15:55Z","timestamp":1671354955000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-68796-0_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030687953","9783030687960"],"references-count":42,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-68796-0_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"21 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICPR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 January 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 January 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ICPR2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.icpr2020.it\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}