{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T04:47:50Z","timestamp":1726116470639},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030687793"},{"type":"electronic","value":"9783030687809"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-68780-9_5","type":"book-chapter","created":{"date-parts":[[2021,2,24]],"date-time":"2021-02-24T17:04:13Z","timestamp":1614186253000},"page":"45-54","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Location-Specific vs Location-Agnostic Machine Learning Metamodels for Predicting Pasture Nitrogen Response Rate"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3888-5628","authenticated-orcid":false,"given":"Christos","family":"Pylianidis","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6911-8184","authenticated-orcid":false,"given":"Val","family":"Snow","sequence":"additional","affiliation":[]},{"given":"Dean","family":"Holzworth","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8928-0253","authenticated-orcid":false,"given":"Jeremy","family":"Bryant","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2764-0078","authenticated-orcid":false,"given":"Ioannis N.","family":"Athanasiadis","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,25]]},"reference":[{"key":"5_CR1","unstructured":"Albert, A.T., Rhoades, A., Ganguly, S., Feldman, D., Jones, A.D., Prabhat, M.: Towards generative deep learning emulators for fast hydroclimate simulations. In: AGU Fall Meeting Abstracts, vol. 2018, pp. IN21C-0723, December 2018"},{"issue":"15","key":"5_CR2","doi-asserted-by":"publisher","first-page":"156001","DOI":"10.1103\/PhysRevLett.122.156001","volume":"122","author":"JA Garrido Torres","year":"2019","unstructured":"Garrido Torres, J.A., Jennings, P.C., Hansen, M.H., Boes, J.R., Bligaard, T.: Low-Scaling algorithm for nudged elastic band calculations using a surrogate machine learning model. Phys. Rev. Lett. 122(15), 156001 (2019). https:\/\/doi.org\/10.1103\/PhysRevLett.122.156001","journal-title":"Phys. Rev. Lett."},{"issue":"2","key":"5_CR3","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1080\/00288230809510438","volume":"51","author":"AG Gillingham","year":"2008","unstructured":"Gillingham, A.G., Morton, J.D., Gray, M.H.: Pasture responses to phosphorus and nitrogen fertilisers on east coast hill country: 2. Clover and grass production from easy slopes. N. Z. J. Agric. Res. 51(2), 85\u201397 (2008). https:\/\/doi.org\/10.1080\/00288230809510438","journal-title":"N. Z. J. Agric. Res."},{"issue":"1","key":"5_CR4","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1007\/s13253-018-00346-y","volume":"24","author":"DW Gladish","year":"2018","unstructured":"Gladish, D.W., Darnell, R., Thorburn, P.J., Haldankar, B.: Emulated multivariate global sensitivity analysis for complex computer models applied to agricultural simulators. J. Agric. Biol. Environ. Stat. 24(1), 130\u2013153 (2018). https:\/\/doi.org\/10.1007\/s13253-018-00346-y","journal-title":"J. Agric. Biol. Environ. Stat."},{"key":"5_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.cageo.2015.04.007","volume":"81","author":"JN Goetz","year":"2015","unstructured":"Goetz, J.N., Brenning, A., Petschko, H., Leopold, P.: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 81, 1\u201311 (2015). https:\/\/doi.org\/10.1016\/j.cageo.2015.04.007","journal-title":"Comput. Geosci."},{"key":"5_CR6","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1016\/j.envsoft.2014.07.009","volume":"62","author":"DP Holzworth","year":"2014","unstructured":"Holzworth, D.P., et al.: APSIM - evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327\u2013350 (2014). https:\/\/doi.org\/10.1016\/j.envsoft.2014.07.009","journal-title":"Environ. Model. Softw."},{"key":"5_CR7","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1016\/j.envsoft.2015.08.002","volume":"73","author":"AR Lima","year":"2015","unstructured":"Lima, A.R., Cannon, A.J., Hsieh, W.W.: Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation. Environ. Model. Softw. 73, 175\u2013188 (2015). https:\/\/doi.org\/10.1016\/j.envsoft.2015.08.002","journal-title":"Environ. Model. Softw."},{"key":"5_CR8","doi-asserted-by":"publisher","first-page":"494","DOI":"10.1016\/j.envsoft.2016.07.017","volume":"84","author":"R Lokers","year":"2016","unstructured":"Lokers, R., Knapen, R., Janssen, S., van Randen, Y., Jansen, J.: Analysis of big data technologies for use in agro-environmental science. Environ. Model. Softw. 84, 494\u2013504 (2016). https:\/\/doi.org\/10.1016\/j.envsoft.2016.07.017","journal-title":"Environ. Model. Softw."},{"issue":"1","key":"5_CR9","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1214\/aoms\/1177730491","volume":"18","author":"HB Mann","year":"1947","unstructured":"Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50\u201360 (1947). https:\/\/doi.org\/10.1214\/aoms\/1177730491","journal-title":"Ann. Math. Stat."},{"key":"5_CR10","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1016\/j.jenvman.2019.01.066","volume":"236","author":"MMJ Ramanantenasoa","year":"2019","unstructured":"Ramanantenasoa, M.M.J., G\u00e9nermont, S., Gilliot, J.M., Bedos, C., Makowski, D.: Meta-modeling methods for estimating ammonia volatilization from nitrogen fertilizer and manure applications. J. Environ. Manage. 236, 195\u2013205 (2019). https:\/\/doi.org\/10.1016\/j.jenvman.2019.01.066","journal-title":"J. Environ. Manage."},{"issue":"3","key":"5_CR11","doi-asserted-by":"publisher","first-page":"253","DOI":"10.3354\/cr01138","volume":"55","author":"P Ramankutty","year":"2013","unstructured":"Ramankutty, P., Ryan, M., Lawes, R., Speijers, J., Renton, M.: Statistical emulators of a plant growth simulation model. Clim. Res. 55(3), 253\u2013265 (2013). https:\/\/doi.org\/10.3354\/cr01138","journal-title":"Clim. Res."},{"key":"5_CR12","doi-asserted-by":"publisher","unstructured":"Shahhosseini, M., Martinez-Feria, R.A., Hu, G., Archontoulis, S.V.: Maize yield and nitrate loss prediction with machine learning algorithms. Environ. Res. Lett. 14(12), p. 124026, December 2019. https:\/\/doi.org\/10.1088\/1748-9326\/ab5268","DOI":"10.1088\/1748-9326\/ab5268"},{"issue":"4","key":"5_CR13","doi-asserted-by":"publisher","first-page":"2303","DOI":"10.5194\/acp-20-2303-2020","volume":"20","author":"T Weber","year":"2020","unstructured":"Weber, T., Corotan, A., Hutchinson, B., Kravitz, B., Link, R.: Technical note: deep learning for creating surrogate models of precipitation in earth system models. Atmos. Chem. Phys. 20(4), 2303\u20132317 (2020). https:\/\/doi.org\/10.5194\/acp-20-2303-2020","journal-title":"Atmos. Chem. Phys."},{"key":"5_CR14","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1007\/978-3-030-47436-2_34","volume-title":"Adv. Knowl. Discov. Data Mining","author":"R Zhang","year":"2020","unstructured":"Zhang, R., Zen, R., Xing, J., Arsa, D.M.S., Saha, A., Bressan, S.: Hydrological process surrogate modelling and simulation with neural networks. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12085, pp. 449\u2013461. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-47436-2_34"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition. ICPR International Workshops and Challenges"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-68780-9_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,2,24]],"date-time":"2021-02-24T17:30:56Z","timestamp":1614187856000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-68780-9_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030687793","9783030687809"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-68780-9_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"25 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICPR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 January 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 January 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ICPR2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.icpr2020.it\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}