{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T04:34:35Z","timestamp":1726115675378},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030681531"},{"type":"electronic","value":"9783030681548"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-68154-8_48","type":"book-chapter","created":{"date-parts":[[2021,2,8]],"date-time":"2021-02-08T23:47:45Z","timestamp":1612828065000},"page":"546-558","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Exploring the Machine Learning Algorithms to Find the Best Features for Predicting the Breast Cancer and Its Recurrence"],"prefix":"10.1007","author":[{"given":"Anika Islam","family":"Aishwarja","sequence":"first","affiliation":[]},{"given":"Nusrat Jahan","family":"Eva","sequence":"additional","affiliation":[]},{"given":"Shakira","family":"Mushtary","sequence":"additional","affiliation":[]},{"given":"Zarin","family":"Tasnim","sequence":"additional","affiliation":[]},{"given":"Nafiz Imtiaz","family":"Khan","sequence":"additional","affiliation":[]},{"given":"Muhammad Nazrul","family":"Islam","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,8]]},"reference":[{"issue":"21","key":"48_CR1","doi-asserted-by":"publisher","first-page":"1481","DOI":"10.1056\/NEJM199805213382101","volume":"338","author":"LA Aaltonen","year":"1998","unstructured":"Aaltonen, L.A., Salovaara, R., Kristo, P., Canzian, F., Hemminki, A., Peltom\u00e4ki, P., Chadwick, R.B., K\u00e4\u00e4ri\u00e4inen, H., Eskelinen, M., J\u00e4rvinen, H., et al.: Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N. Engl. J. Med. 338(21), 1481\u20131487 (1998)","journal-title":"N. Engl. J. Med."},{"key":"48_CR2","doi-asserted-by":"publisher","first-page":"1064","DOI":"10.1016\/j.procs.2016.04.224","volume":"83","author":"H Asri","year":"2016","unstructured":"Asri, H., Mousannif, H., Al Moatassime, H., Noel, T.: Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Comput. Sci. 83, 1064\u20131069 (2016)","journal-title":"Procedia Comput. Sci."},{"key":"48_CR3","doi-asserted-by":"crossref","unstructured":"Bharat, A., Pooja, N., Reddy, R.A.: Using machine learning algorithms for breast cancer risk prediction and diagnosis. In: 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), pp.\u00a01\u20134. IEEE (2018)","DOI":"10.1109\/CIMCA.2018.8739696"},{"issue":"1","key":"48_CR4","first-page":"10","volume":"3","author":"V Chaurasia","year":"2014","unstructured":"Chaurasia, V., Pal, S.: Data mining techniques: to predict and resolve breast cancer survivability. Int. J. Comput. Sci. Mob. Comput. IJCSMC 3(1), 10\u201322 (2014)","journal-title":"Int. J. Comput. Sci. Mob. Comput. IJCSMC"},{"issue":"2","key":"48_CR5","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1177\/1748301818756225","volume":"12","author":"V Chaurasia","year":"2018","unstructured":"Chaurasia, V., Pal, S., Tiwari, B.: Prediction of benign and malignant breast cancer using data mining techniques. J. Algorithms Comput. Technol. 12(2), 119\u2013126 (2018)","journal-title":"J. Algorithms Comput. Technol."},{"key":"48_CR6","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321\u2013357 (2002)","journal-title":"J. Artif. Intell. Res."},{"issue":"2","key":"48_CR7","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1016\/j.artmed.2004.07.002","volume":"34","author":"D Delen","year":"2005","unstructured":"Delen, D., Walker, G., Kadam, A.: Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34(2), 113\u2013127 (2005)","journal-title":"Artif. Intell. Med."},{"key":"48_CR8","unstructured":"Frank, A., Asuncion, A., et\u00a0al.: UCI machine learning repository (2010), 15, 22 (2011). http:\/\/archive.ics.uci.edu\/ml"},{"issue":"3","key":"48_CR9","doi-asserted-by":"publisher","first-page":"242","DOI":"10.4103\/0971-3026.54878","volume":"19","author":"S Gokhale","year":"2009","unstructured":"Gokhale, S.: Ultrasound characterization of breast masses. Indian J. Radiol. Imaging 19(3), 242 (2009)","journal-title":"Indian J. Radiol. Imaging"},{"issue":"1","key":"48_CR10","doi-asserted-by":"publisher","first-page":"e0161501","DOI":"10.1371\/journal.pone.0161501","volume":"12","author":"MW Huang","year":"2017","unstructured":"Huang, M.W., Chen, C.W., Lin, W.C., Ke, S.W., Tsai, C.F.: SVM and SVM ensembles in breast cancer prediction. PLoS ONE 12(1), e0161501 (2017)","journal-title":"PLoS ONE"},{"key":"48_CR11","unstructured":"Inan, T.T., Samia, M.B.R., Tulin, I.T., Islam, M.N.: A decision support model to predict ICU readmission through data mining approach. In: Pacific ASIA Conference on Information Systems (PACIS), p.\u00a0218 (2018)"},{"key":"48_CR12","doi-asserted-by":"crossref","unstructured":"Islam, M.M., Iqbal, H., Haque, M.R., Hasan, M.K.: Prediction of breast cancer using support vector machine and k-nearest neighbors. In: 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 226\u2013229. IEEE (2017)","DOI":"10.1109\/R10-HTC.2017.8288944"},{"issue":"2","key":"48_CR13","doi-asserted-by":"publisher","first-page":"3465","DOI":"10.1016\/j.eswa.2008.02.064","volume":"36","author":"M Karabatak","year":"2009","unstructured":"Karabatak, M., Ince, M.C.: An expert system for detection of breast cancer based on association rules and neural network. Expert Syst. Appl. 36(2), 3465\u20133469 (2009)","journal-title":"Expert Syst. Appl."},{"key":"48_CR14","doi-asserted-by":"crossref","unstructured":"Khan, N.S., Muaz, M.H., Kabir, A., Islam, M.N.: Diabetes predicting mHealth application using machine learning. In: 2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 237\u2013240. IEEE (2017)","DOI":"10.1109\/WIECON-ECE.2017.8468885"},{"issue":"2","key":"48_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.4018\/IJBDAH.2019070101","volume":"4","author":"NS Khan","year":"2019","unstructured":"Khan, N.S., Muaz, M.H., Kabir, A., Islam, M.N.: A machine learning-based intelligent system for predicting diabetes. Int. J. Big Data Anal. Healthcare (IJBDAH) 4(2), 1\u201320 (2019)","journal-title":"Int. J. Big Data Anal. Healthcare (IJBDAH)"},{"key":"48_CR16","doi-asserted-by":"crossref","unstructured":"Khan, N.I., Mahmud, T., Islam, M.N., Mustafina, S.N.: Prediction of cesarean childbirth using ensemble machine learning methods. In: 22nd International Conference on Information Integration and Web-Based Applications Services (IIWAS 2020) (2020)","DOI":"10.1145\/3428757.3429138"},{"key":"48_CR17","doi-asserted-by":"crossref","unstructured":"Khourdifi, Y., Bahaj, M.: Applying best machine learning algorithms for breast cancer prediction and classification. In: 2018 International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), pp.\u00a01\u20135. IEEE (2018)","DOI":"10.1109\/ICECOCS.2018.8610632"},{"key":"48_CR18","doi-asserted-by":"crossref","unstructured":"Khourdifi, Y., Bahaj, M.: Feature selection with fast correlation-based filter for breast cancer prediction and classification learning learning algorithms. In: 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), pp.\u00a01\u20136. IEEE (2018)","DOI":"10.1109\/ISAECT.2018.8618688"},{"key":"48_CR19","unstructured":"Kotsiantis, S., Kanellopoulos, D., Pintelas, P.: Handling imbalanced datasets: a review. Gests Int. Trans. Comput. Sci. Eng. 30, 25\u201336 (2006). Synthetic Oversampling of Instances Using Clustering"},{"issue":"5","key":"48_CR20","doi-asserted-by":"publisher","first-page":"1106","DOI":"10.1109\/TCSS.2019.2912629","volume":"6","author":"A Li","year":"2019","unstructured":"Li, A., Liu, L., Ullah, A., Wang, R., Ma, J., Huang, R., Yu, Z., Ning, H.: Association rule-based breast cancer prevention and control system. IEEE Trans. Comput. Soc. Syst. 6(5), 1106\u20131114 (2019)","journal-title":"IEEE Trans. Comput. Soc. Syst."},{"key":"48_CR21","doi-asserted-by":"crossref","unstructured":"Liu, Y.Q., Wang, C., Zhang, L.: Decision tree based predictive models for breast cancer survivability on imbalanced data. In: 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, pp.\u00a01\u20134. IEEE (2009)","DOI":"10.1109\/ICBBE.2009.5162571"},{"key":"48_CR22","unstructured":"Mangasarian, O.L., Musicant, D.R.: Lagrangian support vector machines. J. Mach. Learn. Res1, 161\u2013177 (2001)"},{"key":"48_CR23","doi-asserted-by":"crossref","unstructured":"Miah, Y., Prima, C.N.E., Seema, S.J., Mahmud, M., Kaiser, M.S.: Performance comparison of machine learning techniques in identifying dementia from open access clinical datasets. In: Advances on Smart and Soft Computing, pp. 79\u201389. Springer (2020)","DOI":"10.1007\/978-981-15-6048-4_8"},{"key":"48_CR24","doi-asserted-by":"crossref","unstructured":"Omar, K.S., Mondal, P., Khan, N.S., Rizvi, M.R.K., Islam, M.N.: A machine learning approach to predict autism spectrum disorder. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp.\u00a01\u20136. IEEE (2019)","DOI":"10.1109\/ECACE.2019.8679454"},{"issue":"12","key":"48_CR25","doi-asserted-by":"publisher","first-page":"e0226765","DOI":"10.1371\/journal.pone.0226765","volume":"14","author":"GF Stark","year":"2019","unstructured":"Stark, G.F., Hart, G.R., Nartowt, B.J., Deng, J.: Predicting breast cancer risk using personal health data and machine learning models. PLoS ONE 14(12), e0226765 (2019)","journal-title":"PLoS ONE"},{"key":"48_CR26","doi-asserted-by":"publisher","unstructured":"Vasant, P., Zelinka, I., Weber, G.W. (eds.): Intelligent Computing and Optimization. Springer International Publishing (2020). https:\/\/doi.org\/10.1007\/978-3-030-33585-4","DOI":"10.1007\/978-3-030-33585-4"},{"key":"48_CR27","doi-asserted-by":"crossref","unstructured":"Yarabarla, M.S., Ravi, L.K., Sivasangari, A.: Breast cancer prediction via machine learning. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 121\u2013124. IEEE (2019)","DOI":"10.1109\/ICOEI.2019.8862533"}],"container-title":["Advances in Intelligent Systems and Computing","Intelligent Computing and Optimization"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-68154-8_48","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,14]],"date-time":"2021-05-14T13:18:09Z","timestamp":1620998289000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-68154-8_48"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030681531","9783030681548"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-68154-8_48","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"8 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICO","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Computing & Optimization","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Koh Samui","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 December 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 December 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ico0","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}