{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T04:47:10Z","timestamp":1726116430670},"publisher-location":"Cham","reference-count":18,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030676698"},{"type":"electronic","value":"9783030676704"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-67670-4_7","type":"book-chapter","created":{"date-parts":[[2021,2,24]],"date-time":"2021-02-24T17:04:13Z","timestamp":1614186253000},"page":"101-117","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Filling Gaps in Micro-meteorological Data"],"prefix":"10.1007","author":[{"given":"Antoine","family":"Richard","sequence":"first","affiliation":[]},{"given":"Lior","family":"Fine","sequence":"additional","affiliation":[]},{"given":"Offer","family":"Rozenstein","sequence":"additional","affiliation":[]},{"given":"Josef","family":"Tanny","sequence":"additional","affiliation":[]},{"given":"Matthieu","family":"Geist","sequence":"additional","affiliation":[]},{"given":"Cedric","family":"Pradalier","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,25]]},"reference":[{"key":"7_CR1","unstructured":"Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http:\/\/tensorflow.org\/. software available from tensorflow.org"},{"issue":"1","key":"7_CR2","doi-asserted-by":"publisher","first-page":"6085","DOI":"10.1038\/s41598-018-24271-9","volume":"8","author":"Z Che","year":"2018","unstructured":"Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 6085 (2018)","journal-title":"Sci. Rep."},{"key":"7_CR3","doi-asserted-by":"crossref","unstructured":"Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)","DOI":"10.3115\/v1\/D14-1179"},{"key":"7_CR4","doi-asserted-by":"crossref","unstructured":"Coutinho, E.R., Silva, R.M.d., Madeira, J.G.F., Coutinho, P.R.d.O.d., Boloy, R.A.M., Delgado, A.R.S., et al.: Application of artificial neural networks (ANNs) in the gap filling of meteorological time series. Revista Brasileira de Meteorologia 33(2), 317\u2013328 (2018)","DOI":"10.1590\/0102-7786332013"},{"key":"7_CR5","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)"},{"issue":"1","key":"7_CR6","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1016\/S0168-1923(00)00235-5","volume":"107","author":"E Falge","year":"2001","unstructured":"Falge, E., et al.: Gap filling strategies for long term energy flux data sets. Agric. For. Meteorol. 107(1), 71\u201377 (2001)","journal-title":"Agric. For. Meteorol."},{"key":"7_CR7","unstructured":"Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1243\u20131252. JMLR. org (2017)"},{"key":"7_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"799","DOI":"10.1007\/11550907_126","volume-title":"Artificial Neural Networks: Formal Models and Their Applications \u2013 ICANN 2005","author":"A Graves","year":"2005","unstructured":"Graves, A., Fern\u00e1ndez, S., Schmidhuber, J.: Bidirectional LSTM networks for improved phoneme classification and recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadro\u017cny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799\u2013804. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/11550907_126"},{"issue":"8","key":"7_CR9","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"key":"7_CR10","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"issue":"8","key":"7_CR11","doi-asserted-by":"publisher","first-page":"1855","DOI":"10.3390\/s17081855","volume":"17","author":"M Lange","year":"2017","unstructured":"Lange, M., Dechant, B., Rebmann, C., Vohland, M., Cuntz, M., Doktor, D.: Validating MODIS and sentinel-2 NDVI products at a temperate deciduous forest site using two independent ground-based sensors. Sensors 17(8), 1855 (2017)","journal-title":"Sensors"},{"key":"7_CR12","unstructured":"Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3 (2013)"},{"issue":"3\u20134","key":"7_CR13","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1016\/j.agrformet.2007.08.011","volume":"147","author":"AM Moffat","year":"2007","unstructured":"Moffat, A.M., et al.: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric. For. Meteorol. 147(3\u20134), 209\u2013232 (2007)","journal-title":"Agric. For. Meteorol."},{"issue":"4","key":"7_CR14","doi-asserted-by":"publisher","first-page":"525","DOI":"10.1046\/j.1365-2486.2003.00609.x","volume":"9","author":"D Papale","year":"2003","unstructured":"Papale, D., Valentini, R.: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob. Change Biol. 9(4), 525\u2013535 (2003)","journal-title":"Glob. Change Biol."},{"issue":"9","key":"7_CR15","doi-asserted-by":"publisher","first-page":"1424","DOI":"10.1111\/j.1365-2486.2005.001002.x","volume":"11","author":"M Reichstein","year":"2005","unstructured":"Reichstein, M., et al.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11(9), 1424\u20131439 (2005)","journal-title":"Glob. Change Biol."},{"key":"7_CR16","unstructured":"Richard, A., Mah\u00e9, A., Pradalier, C., Rozenstein, O., Geist, M.: A comprehensive benchmark of neural networks for system identification (2019)"},{"key":"7_CR17","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998\u20136008 (2017)"},{"issue":"16","key":"7_CR18","doi-asserted-by":"publisher","first-page":"5015","DOI":"10.5194\/bg-15-5015-2018","volume":"15","author":"T Wutzler","year":"2018","unstructured":"Wutzler, T., et al.: Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15(16), 5015\u20135030 (2018)","journal-title":"Biogeosciences"}],"container-title":["Lecture Notes in Computer Science","Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-67670-4_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T11:47:13Z","timestamp":1710244033000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-67670-4_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030676698","9783030676704"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-67670-4_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"25 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECML PKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Ghent","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Belgium","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecml2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ecmlpkdd2020.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"945","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"195","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4,5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4,4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference took place virtually due to the COVID-19 pandemic","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}