{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T19:20:01Z","timestamp":1743103201899,"version":"3.40.3"},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030668426"},{"type":"electronic","value":"9783030668433"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-66843-3_22","type":"book-chapter","created":{"date-parts":[[2020,12,30]],"date-time":"2020-12-30T16:03:20Z","timestamp":1609344200000},"page":"229-239","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Radiogenomics of Glioblastoma: Identification of Radiomics Associated with Molecular Subtypes"],"prefix":"10.1007","author":[{"given":"Navodini","family":"Wijethilake","sequence":"first","affiliation":[]},{"given":"Mobarakol","family":"Islam","sequence":"additional","affiliation":[]},{"given":"Dulani","family":"Meedeniya","sequence":"additional","affiliation":[]},{"given":"Charith","family":"Chitraranjan","sequence":"additional","affiliation":[]},{"given":"Indika","family":"Perera","sequence":"additional","affiliation":[]},{"given":"Hongliang","family":"Ren","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,12,31]]},"reference":[{"issue":"7","key":"22_CR1","doi-asserted-by":"publisher","first-page":"1349","DOI":"10.3174\/ajnr.A2950","volume":"33","author":"J Carrillo","year":"2012","unstructured":"Carrillo, J., et al.: Relationship between tumor enhancement, edema, idh1 mutational status, mgmt promoter methylation, and survival in glioblastoma. Am. J. Neuroradiol. 33(7), 1349\u20131355 (2012)","journal-title":"Am. J. Neuroradiol."},{"key":"22_CR2","doi-asserted-by":"publisher","first-page":"1004","DOI":"10.3389\/fimmu.2018.01004","volume":"9","author":"Z Chen","year":"2018","unstructured":"Chen, Z., Hambardzumyan, D.: Immune microenvironment in glioblastoma subtypes. Front. Immunol. 9, 1004 (2018)","journal-title":"Front. Immunol."},{"issue":"11","key":"22_CR3","doi-asserted-by":"publisher","first-page":"1062","DOI":"10.1007\/s12094-016-1497-x","volume":"18","author":"PD Delgado-L\u00f3pez","year":"2016","unstructured":"Delgado-L\u00f3pez, P.D., Corrales-Garc\u00eda, E.M.: Survival in glioblastoma: a review on the impact of treatment modalities. Clin. Transl. Oncol. 18(11), 1062\u20131071 (2016). https:\/\/doi.org\/10.1007\/s12094-016-1497-x","journal-title":"Clin. Transl. Oncol."},{"key":"22_CR4","unstructured":"Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Maintainer, A., Leisch@ci, f., Tuwien, A.: At: The e1071 package (2006)"},{"key":"22_CR5","doi-asserted-by":"publisher","first-page":"115","DOI":"10.3389\/fonc.2019.00115","volume":"9","author":"L Follia","year":"2019","unstructured":"Follia, L., et al.: Integrative analysis of novel metabolic subtypes in pancreatic cancer fosters new prognostic biomarkers. Front. Oncol. 9, 115 (2019)","journal-title":"Front. Oncol."},{"issue":"43","key":"22_CR6","doi-asserted-by":"publisher","first-page":"70494","DOI":"10.18632\/oncotarget.12038","volume":"7","author":"YF Gao","year":"2016","unstructured":"Gao, Y.F., et al.: Col3a1 and snap91: novel glioblastoma markers with diagnostic and prognostic value. Oncotarget 7(43), 70494 (2016)","journal-title":"Oncotarget"},{"issue":"2","key":"22_CR7","doi-asserted-by":"publisher","first-page":"560","DOI":"10.1148\/radiol.13120118","volume":"267","author":"DA Gutman","year":"2013","unstructured":"Gutman, D.A., et al.: MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2), 560\u2013569 (2013)","journal-title":"Radiology"},{"issue":"1","key":"22_CR8","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10\u201318 (2009)","journal-title":"SIGKDD Explor."},{"key":"22_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1007\/978-3-030-11726-9_13","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"M Islam","year":"2019","unstructured":"Islam, M., Jose, V.J.M., Ren, H.: Glioma prognosis: segmentation of the tumor and survival prediction using shape, geometric and clinical information. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 142\u2013153. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-11726-9_13"},{"key":"22_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1007\/978-3-030-46640-4_25","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"M Islam","year":"2020","unstructured":"Islam, M., Vibashan, V.S., Jose, V.J.M., Wijethilake, N., Utkarsh, U., Ren, H.: Brain tumor segmentation and survival prediction using 3D attention UNet. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 262\u2013272. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-46640-4_25"},{"issue":"3","key":"22_CR11","doi-asserted-by":"publisher","first-page":"417","DOI":"10.1093\/neuonc\/nov127","volume":"18","author":"L Macyszyn","year":"2015","unstructured":"Macyszyn, L., et al.: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-oncology 18(3), 417\u2013425 (2015)","journal-title":"Neuro-oncology"},{"issue":"2","key":"22_CR12","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1148\/radiol.14132641","volume":"273","author":"MA Mazurowski","year":"2014","unstructured":"Mazurowski, M.A., Zhang, J., Grimm, L.J., Yoon, S.C., Silber, J.I.: Radiogenomic analysis of breast cancer: luminal b molecular subtype is associated with enhancement dynamics at mr imaging. Radiology 273(2), 365\u2013372 (2014)","journal-title":"Radiology"},{"issue":"5","key":"22_CR13","doi-asserted-by":"publisher","first-page":"626","DOI":"10.1093\/neuonc\/not008","volume":"15","author":"KM Naeini","year":"2013","unstructured":"Naeini, K.M., et al.: Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images. Neuro-oncology 15(5), 626\u2013634 (2013)","journal-title":"Neuro-oncology"},{"key":"22_CR14","doi-asserted-by":"crossref","unstructured":"Ostrom, Q.T., Gittleman, H., Truitt, G., Boscia, A., Kruchko, C., Barnholtz-Sloan, J.S.: Cbtrus statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2011\u20132015. Neuro-oncology 20(suppl\\_4), iv1\u2013iv86 (2018)","DOI":"10.1093\/neuonc\/noy131"},{"key":"22_CR15","doi-asserted-by":"crossref","unstructured":"Pieper, S., Halle, M., Kikinis, R.: 3d slicer. In: 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), pp. 632\u2013635. IEEE (2004)","DOI":"10.1109\/ISBI.2004.1398617"},{"issue":"10","key":"22_CR16","doi-asserted-by":"publisher","first-page":"1418","DOI":"10.1038\/modpathol.2010.136","volume":"23","author":"S Rorive","year":"2010","unstructured":"Rorive, S., et al.: Timp-4 and cd63: new prognostic biomarkers in human astrocytomas. Modern Pathol. 23(10), 1418\u20131428 (2010)","journal-title":"Modern Pathol."},{"key":"22_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"421","DOI":"10.1007\/978-3-030-00928-1_48","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"AG Roy","year":"2018","unstructured":"Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel \u2018squeeze & excitation\u2019 in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421\u2013429. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00928-1_48"},{"issue":"10","key":"22_CR18","doi-asserted-by":"publisher","first-page":"587","DOI":"10.1038\/nrclinonc.2017.122","volume":"14","author":"P Sidaway","year":"2017","unstructured":"Sidaway, P.: Glioblastoma subtypes revisited. Nat. Rev. Clin. Oncol. 14(10), 587\u2013587 (2017)","journal-title":"Nat. Rev. Clin. Oncol."},{"issue":"1","key":"22_CR19","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1002\/jmri.25119","volume":"44","author":"EJ Sutton","year":"2016","unstructured":"Sutton, E.J., et al.: Breast cancer molecular subtype classifier that incorporates MRI features. J. Magn. Reson. Imag. 44(1), 122\u2013129 (2016)","journal-title":"J. Magn. Reson. Imag."},{"issue":"1","key":"22_CR20","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1016\/j.ccr.2009.12.020","volume":"17","author":"RG Verhaak","year":"2010","unstructured":"Verhaak, R.G., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in pdgfra, idh1, egfr, and nf1. Cancer Cell 17(1), 98\u2013110 (2010)","journal-title":"Cancer Cell"},{"issue":"1","key":"22_CR21","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1016\/j.ccell.2017.06.003","volume":"32","author":"Q Wang","year":"2017","unstructured":"Wang, Q., et al.: Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32(1), 42\u201356 (2017)","journal-title":"Cancer Cell"},{"issue":"8","key":"22_CR22","doi-asserted-by":"publisher","first-page":"1767","DOI":"10.1007\/s11517-020-02179-9","volume":"58","author":"N Wijethilake","year":"2020","unstructured":"Wijethilake, N., Islam, M., Ren, H.: Radiogenomics model for overall survival prediction of glioblastoma. Med. Biol. Eng. Comput. 58(8), 1767\u20131777 (2020). https:\/\/doi.org\/10.1007\/s11517-020-02179-9","journal-title":"Med. Biol. Eng. Comput."}],"container-title":["Lecture Notes in Computer Science","Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-66843-3_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T11:59:24Z","timestamp":1724155164000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-66843-3_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030668426","9783030668433"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-66843-3_22","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"31 December 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"RNO-AI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Radiomics and Radiogenomics in Neuro-oncology","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lima","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Peru","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"rno-ai2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/rno-ai-2020\/home","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"None","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"100% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The workshop was held virtually due to the COVID-19 pandemic. Three keynote talks are also included.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}