{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T10:17:07Z","timestamp":1743157027454,"version":"3.40.3"},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030645823"},{"type":"electronic","value":"9783030645830"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-64583-0_39","type":"book-chapter","created":{"date-parts":[[2021,1,7]],"date-time":"2021-01-07T12:10:48Z","timestamp":1610021448000},"page":"434-447","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["A Krill Herd Algorithm for the Multiobjective Energy Reduction Multi-Depot Vehicle Routing Problem"],"prefix":"10.1007","author":[{"given":"Emmanouela","family":"Rapanaki","sequence":"first","affiliation":[]},{"given":"Iraklis - Dimitrios","family":"Psychas","sequence":"additional","affiliation":[]},{"given":"Magdalene","family":"Marinaki","sequence":"additional","affiliation":[]},{"given":"Nikolaos","family":"Matsatsinis","sequence":"additional","affiliation":[]},{"given":"Yannis","family":"Marinakis","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,1,8]]},"reference":[{"issue":"3","key":"39_CR1","doi-asserted-by":"publisher","first-page":"775","DOI":"10.1016\/j.ejor.2013.12.033","volume":"237","author":"E Demir","year":"2014","unstructured":"Demir, E., Bekta\u015f, T., Laporte, G.: A review of recent research on green road freight transportation. Eur. J. Oper. Res. 237(3), 775\u2013793 (2014)","journal-title":"Eur. J. Oper. Res."},{"issue":"12","key":"39_CR2","doi-asserted-by":"publisher","first-page":"4831","DOI":"10.1016\/j.cnsns.2012.05.010","volume":"17","author":"AH Gandomi","year":"2012","unstructured":"Gandomi, A.H., Alavi, A.H.: Krill Herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831\u20134845 (2012)","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"39_CR3","doi-asserted-by":"publisher","first-page":"417","DOI":"10.1016\/j.trd.2018.01.026","volume":"59","author":"J Li","year":"2018","unstructured":"Li, J., Wang, R., Li, T., Lu, Z., Pardalos, P.: Benefit analysis of shared depot resources for multi-depot vehicle routing problem with fuel consumption. Transp. Res. Part D: Transp. Environ. 59, 417\u2013432 (2018)","journal-title":"Transp. Res. Part D: Transp. Environ."},{"issue":"4","key":"39_CR4","doi-asserted-by":"publisher","first-page":"1118","DOI":"10.1016\/j.eswa.2013.07.107","volume":"41","author":"C Lin","year":"2014","unstructured":"Lin, C., Choy, K.L., Ho, G.T.S., Chung, S.H., Lam, H.Y.: Survey of green vehicle routing problem: past and future trends. Expert Syst. Appl. 41(4), 1118\u20131138 (2014)","journal-title":"Expert Syst. Appl."},{"key":"39_CR5","doi-asserted-by":"crossref","unstructured":"Marti, R., Pardalos, P.M., Resende, M.G.: Handbook of Heuristics. Springer (2018). ISBN 978-3-319-07123-7","DOI":"10.1007\/978-3-319-07124-4"},{"key":"39_CR6","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1016\/j.cie.2014.10.029","volume":"79","author":"JR Montoya-Torres","year":"2015","unstructured":"Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jimenez, H.F., Herazo-Padilla, N.: A literature review on the vehicle routing problem with multiple depots. Comput. Ind. Eng. 79, 115\u2013129 (2015)","journal-title":"Comput. Ind. Eng."},{"key":"39_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"336","DOI":"10.1007\/978-3-319-15934-8_23","volume-title":"Evolutionary Multi-Criterion Optimization","author":"I-D Psychas","year":"2015","unstructured":"Psychas, I.-D., Marinaki, M., Marinakis, Y.: A parallel multi-start NSGA II algorithm for multiobjective energy reduction vehicle routing problem. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 336\u2013350. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-15934-8_23"},{"key":"39_CR8","doi-asserted-by":"publisher","first-page":"785","DOI":"10.1007\/s12667-016-0209-5","volume":"8","author":"ID Psychas","year":"2016","unstructured":"Psychas, I.D., Marinaki, M., Marinakis, Y., Migdalas, A.: Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst. 8, 785\u2013814 (2016)","journal-title":"Energy Syst."},{"key":"39_CR9","series-title":"Springer Proceedings in Mathematics & Statistics","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/978-3-319-29608-1_5","volume-title":"Models, Algorithms and Technologies for Network Analysis","author":"I-D Psychas","year":"2016","unstructured":"Psychas, I.-D., Marinaki, M., Marinakis, Y., Migdalas, A.: Minimizing the fuel consumption of a multiobjective vehicle routing problem using the parallel multi-start NSGA II algorithm. In: Kalyagin, V.A., Koldanov, P.A., Pardalos, P.M. (eds.) Models, Algorithms and Technologies for Network Analysis. SPMS, vol. 156, pp. 69\u201388. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-29608-1_5"},{"key":"39_CR10","series-title":"Springer Optimization and Its Applications","doi-asserted-by":"publisher","first-page":"425","DOI":"10.1007\/978-3-319-68640-0_20","volume-title":"Optimization Methods and Applications","author":"I-D Psychas","year":"2017","unstructured":"Psychas, I.-D., Marinaki, M., Marinakis, Y., Migdalas, A.: Parallel multi-start non-dominated sorting particle swarm optimization algorithms for the minimization of the route-based fuel consumption of multiobjective vehicle routing problems. In: Butenko, S., Pardalos, P.M., Shylo, V. (eds.) Optimization Methods and Applications. SOIA, vol. 130, pp. 425\u2013456. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-68640-0_20"},{"key":"39_CR11","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1007\/978-3-030-13709-0_32","volume-title":"Machine Learning, Optimization, and Data Science LOD 2018","author":"E Rapanaki","year":"2019","unstructured":"Rapanaki, E., Psychas, I.D., Marinaki, M., Marinakis, Y., Migdalas, A.: A clonal selection algorithm for multiobjective energy reduction multi-depot vehicle routing problem. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V. (eds.) Machine Learning, Optimization, and Data Science LOD 2018. LNCS, vol. 11331, pp. 381\u2013393. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-13709-0_32"},{"key":"39_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"208","DOI":"10.1007\/978-3-030-38629-0_17","volume-title":"Learning and Intelligent Optimization","author":"E Rapanaki","year":"2020","unstructured":"Rapanaki, E., Psychas, I.-D., Marinaki, M., Marinakis, Y.: An artificial bee colony algorithm for the multiobjective energy reduction multi-depot vehicle routing problem. In: Matsatsinis, N.F., Marinakis, Y., Pardalos, P. (eds.) LION 2019. LNCS, vol. 11968, pp. 208\u2013223. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-38629-0_17"},{"key":"39_CR13","doi-asserted-by":"crossref","unstructured":"Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods and Applications, 2nd edn. MOS-SIAM Series on Optimization, SIAM, Philadelphia (2014)","DOI":"10.1137\/1.9781611973594"},{"key":"39_CR14","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1016\/j.ins.2014.02.123","volume":"274","author":"G-G Wang","year":"2014","unstructured":"Wang, G.-G., Guo, L., Gandomi, A.H., Hao, G.-S., Wang, H.: Chaotic Krill Herd algorithm. Inf. Sci. 274, 17\u201334 (2014)","journal-title":"Inf. Sci."},{"key":"39_CR15","doi-asserted-by":"publisher","first-page":"363","DOI":"10.1016\/j.neucom.2013.08.031","volume":"128","author":"G-G Wang","year":"2014","unstructured":"Wang, G.-G., Gandomi, A.H., Alavi, A.H.: Stud krill herd algorithm. Neurocomputing 128, 363\u2013370 (2014)","journal-title":"Neurocomputing"},{"issue":"1","key":"39_CR16","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1007\/s10462-017-9559-1","volume":"51","author":"G-G Wang","year":"2017","unstructured":"Wang, G.-G., Gandomi, A.H., Alavi, A.H., Gong, D.: A comprehensive review of krill herd algorithm: variants, hybrids and applications. Artif. Intell. Rev. 51(1), 119\u2013148 (2017). https:\/\/doi.org\/10.1007\/s10462-017-9559-1","journal-title":"Artif. Intell. Rev."},{"issue":"7","key":"39_CR17","doi-asserted-by":"publisher","first-page":"1419","DOI":"10.1016\/j.cor.2011.08.013","volume":"39","author":"Y Xiao","year":"2012","unstructured":"Xiao, Y., Zhao, Q., Kaku, I., Xu, Y.: Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput. Oper. Res. 39(7), 1419\u20131431 (2012)","journal-title":"Comput. Oper. Res."}],"container-title":["Lecture Notes in Computer Science","Machine Learning, Optimization, and Data Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-64583-0_39","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,26]],"date-time":"2021-04-26T20:02:31Z","timestamp":1619467351000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-64583-0_39"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030645823","9783030645830"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-64583-0_39","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"8 January 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"LOD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Machine Learning, Optimization, and Data Science","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Siena","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 July 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 July 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mod2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/lod2020.icas.xyz\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"in-house system and easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"209","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"116","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"56% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5-6","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1-2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}