{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T10:05:13Z","timestamp":1743069913035,"version":"3.40.3"},"publisher-location":"Cham","reference-count":37,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_49","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"592-604","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Memetic Genetic Algorithms for Time Series Compression by Piecewise Linear Approximation"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0076-6308","authenticated-orcid":false,"given":"Tobias","family":"Friedrich","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1765-1219","authenticated-orcid":false,"given":"Martin S.","family":"Krejca","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8771-1870","authenticated-orcid":false,"given":"J. A. Gregor","family":"Lagodzinski","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1927-969X","authenticated-orcid":false,"given":"Manuel","family":"Rizzo","sequence":"additional","affiliation":[]},{"given":"Arthur","family":"Zahn","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"49_CR1","doi-asserted-by":"crossref","unstructured":"Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Proceedings of FODO 1993, pp. 69\u201384 (1993)","DOI":"10.1007\/3-540-57301-1_5"},{"key":"49_CR2","doi-asserted-by":"crossref","unstructured":"Aruoba, S.B., Fern\u00e1ndez-Villaverde, J.: A comparison of programming languages in economics. Working Paper 20263, National Bureau of Economic Research (2014)","DOI":"10.3386\/w20263"},{"key":"49_CR3","doi-asserted-by":"publisher","unstructured":"Baragona, R., Battaglia, F., Poli, I.: Evolutionary Statistical Procedures. An evolutionary computation approach to statistical procedures designs and applications. Springer (2011).https:\/\/doi.org\/10.1007\/978-3-6SD42-16218-3","DOI":"10.1007\/978-3-6SD42-16218-3"},{"key":"49_CR4","doi-asserted-by":"crossref","unstructured":"Bellman, R., Kotkin, B.: On the approximation of curves by line segments using dynamic programming. RAND Corporation, II. Technical report (1962)","DOI":"10.1145\/366573.366611"},{"issue":"4\u20136","key":"49_CR5","doi-asserted-by":"publisher","first-page":"1137","DOI":"10.1007\/s00477-019-01692-0","volume":"33","author":"D Cucina","year":"2019","unstructured":"Cucina, D., Rizzo, M., Ursu, E.: Multiple changepoint detection for periodic autoregressive models with an application to river flow analysis. Stoch. Environ. Res. Risk Assess. 33(4\u20136), 1137\u20131157 (2019)","journal-title":"Stoch. Environ. Res. Risk Assess."},{"issue":"5","key":"49_CR6","doi-asserted-by":"publisher","first-page":"1732","DOI":"10.1007\/s00453-017-0341-1","volume":"80","author":"B Doerr","year":"2018","unstructured":"Doerr, B., Doerr, C., K\u00f6tzing, T.: Static and self-adjusting mutation strengths for multi-valued decision variables. Algorithmica 80(5), 1732\u20131768 (2018)","journal-title":"Algorithmica"},{"issue":"16","key":"49_CR7","doi-asserted-by":"publisher","first-page":"4707","DOI":"10.1007\/s00500-016-2079-0","volume":"21","author":"B Doerr","year":"2017","unstructured":"Doerr, B., Fischer, P., Hilbert, A., Witt, C.: Detecting structural breaks in time series via genetic algorithms. Soft. Comput. 21(16), 4707\u20134720 (2017)","journal-title":"Soft. Comput."},{"issue":"2","key":"49_CR8","first-page":"112","volume":"10","author":"DH Douglas","year":"1973","unstructured":"Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartograph. Int. J. Geograph. Inf. Geovis. 10(2), 112\u2013122 (1973)","journal-title":"Cartograph. Int. J. Geograph. Inf. Geovis."},{"key":"49_CR9","volume-title":"Time Series Databases: New Ways to Store and Access Data","author":"T Dunning","year":"2014","unstructured":"Dunning, T., Friedman, E.: Time Series Databases: New Ways to Store and Access Data. O\u2019Reilly and Associates, Sebastopol (2014)"},{"key":"49_CR10","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/j.neucom.2018.05.129","volume":"353","author":"AM Dur\u00e1n-Rosal","year":"2019","unstructured":"Dur\u00e1n-Rosal, A.M., Guti\u00e9rrez, P.A., Poyato, \u00c1.C., Herv\u00e1s-Mart\u00ednez, C.: A hybrid dynamic exploitation barebones particle swarm optimisation algorithm for time series segmentation. Neurocomputing 353, 45\u201355 (2019)","journal-title":"Neurocomputing"},{"issue":"2","key":"49_CR11","first-page":"253","volume":"8","author":"AM Dur\u00e1n-Rosal","year":"2019","unstructured":"Dur\u00e1n-Rosal, A.M., Guti\u00e9rrez, P.A., Salcedo-Sanz, S., Herv\u00e1s-Mart\u00ednez, C.: Dynamical memetization in coral reef optimization algorithms for optimal time series approximation. Progress in AI 8(2), 253\u2013262 (2019)","journal-title":"Progress in AI"},{"key":"49_CR12","doi-asserted-by":"crossref","unstructured":"Dur\u00e1n-Rosal, A.M., Pe\u00e1a, P.A.G., Mart\u00ednez-Estudillo, F.J., Herv\u00e1s-Mart\u00ednez, C.: Time series representation by a novel hybrid segmentation algorithm. In: Proceedings of HAIS 2016, vol. 9648, pp. 163\u2013173 (2016)","DOI":"10.1007\/978-3-319-32034-2_14"},{"key":"49_CR13","series-title":"Natural computing series","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-44874-8","volume-title":"Introduction to Evolutionary Computing","author":"AE Eiben","year":"2015","unstructured":"Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. NCS. Springer, Heidelberg (2015). https:\/\/doi.org\/10.1007\/978-3-662-44874-8"},{"issue":"1","key":"49_CR14","first-page":"145","volume":"2","author":"H Elmeleegy","year":"2009","unstructured":"Elmeleegy, H., Elmagarmid, A.K., Cecchet, E., Aref, W.G., Zwaenepoel, W.: Online piecewise linear approximation of numerical streams with precision guarantees. PVLDB 2(1), 145\u2013156 (2009)","journal-title":"PVLDB"},{"issue":"1","key":"49_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2379776.2379788","volume":"45","author":"P Esling","year":"2012","unstructured":"Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surveys (CSUR) 45(1), 1\u201334 (2012)","journal-title":"ACM Comput. Surveys (CSUR)"},{"key":"49_CR16","doi-asserted-by":"publisher","unstructured":"Fan, J., Yao, Q.: Nonlinear Time Series. Nonparametric and parametric methods. Springer (2008). https:\/\/doi.org\/10.1007\/978-0-387-69395-8","DOI":"10.1007\/978-0-387-69395-8"},{"issue":"1","key":"49_CR17","doi-asserted-by":"publisher","first-page":"164","DOI":"10.1016\/j.engappai.2010.09.007","volume":"24","author":"TC Fu","year":"2011","unstructured":"Fu, T.C.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164\u2013181 (2011)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"49_CR18","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1016\/j.is.2016.11.001","volume":"65","author":"G Hollmig","year":"2017","unstructured":"Hollmig, G., et al.: An evaluation of combinations of lossy compression and change-detection approaches for time-series data. Inf. Syst. 65, 65\u201377 (2017)","journal-title":"Inf. Syst."},{"issue":"11","key":"49_CR19","doi-asserted-by":"publisher","first-page":"2434","DOI":"10.1109\/TKDE.2012.237","volume":"25","author":"NQV Hung","year":"2013","unstructured":"Hung, N.Q.V., Jeung, H., Aberer, K.: An evaluation of model-based approaches to sensor data compression. IEEE Trans. Knowl. Data Eng. 25(11), 2434\u20132447 (2013)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"49_CR20","doi-asserted-by":"crossref","unstructured":"Hurvitz, P.M.: GPS and accelerometer time stamps: proper data handling and avoiding pitfalls. In: Proceedings of ACM SIGSPATIAL 2015, pp. 94\u2013100 (2015)","DOI":"10.1145\/2835022.2835038"},{"key":"49_CR21","doi-asserted-by":"crossref","unstructured":"Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: a survey and novel approach. In: Data Mining in Time Series Databases, pp. 1\u201321. World Scientific (2004)","DOI":"10.1142\/9789812565402_0001"},{"key":"49_CR22","doi-asserted-by":"crossref","unstructured":"Last, M., Horst, B., Abraham, K.: Data mining in time series databases. World Scientific (2004)","DOI":"10.1142\/9789812565402"},{"key":"49_CR23","doi-asserted-by":"crossref","unstructured":"Lin, J.W., Liao, S.W., Leu, F.Y.: Sensor data compression using bounded error piecewise linear approximation with resolution reduction. Energies 12(13), 2523 (2019)","DOI":"10.3390\/en12132523"},{"issue":"1","key":"49_CR24","first-page":"31","volume":"1","author":"M Lovri\u0107","year":"2014","unstructured":"Lovri\u0107, M., Milanovi\u0107, M., Stamenkovi\u0107, M.: Algoritmic methods for segmentation of time series: an overview. JCBI 1(1), 31\u201353 (2014)","journal-title":"JCBI"},{"key":"49_CR25","unstructured":"Marmarelis, M.G.: Efficient and robust polylinear analysis of noisy time series. arXiv preprint, CoRR abs\/1704.02577 (2017)"},{"issue":"3","key":"49_CR26","doi-asserted-by":"publisher","first-page":"244","DOI":"10.1016\/S0146-664X(72)80017-0","volume":"1","author":"U Ramer","year":"1972","unstructured":"Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1(3), 244\u2013256 (1972)","journal-title":"Comput. Graph. Image Process."},{"key":"49_CR27","doi-asserted-by":"publisher","unstructured":"Ratanamahatana, C.A., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M., Das, G.: Mining time series data. In: Data Mining and Knowledge Discovery Handbook, pp. 1069\u20131103. Springer, Boston (2005). https:\/\/doi.org\/10.1007\/0-387-25465-X_51","DOI":"10.1007\/0-387-25465-X_51"},{"key":"49_CR28","doi-asserted-by":"crossref","unstructured":"Reiss, A., Stricker, D.: Creating and benchmarking a new dataset for physical activity monitoring. In: Proceedings of PETRA 2012, pp. 1\u20138 (2012)","DOI":"10.1145\/2413097.2413148"},{"key":"49_CR29","doi-asserted-by":"crossref","unstructured":"Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: Proceedings of ISWC 2012, pp. 108\u2013109 (2012)","DOI":"10.1109\/ISWC.2012.13"},{"key":"49_CR30","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1016\/j.advengsoft.2017.01.008","volume":"105","author":"S Sinaie","year":"2017","unstructured":"Sinaie, S., Nguyen, V.P., Nguyen, C.T., Bordas, S.: Programming the material point method in Julia. Adv. Eng. Softw. 105, 17\u201329 (2017)","journal-title":"Adv. Eng. Softw."},{"key":"49_CR31","doi-asserted-by":"crossref","unstructured":"Struzik, Z.R., Siebes, A.: Wavelet transform in similarity paradigm. In: Proceedings of PAKDD, pp. 295\u2013309 (1998)","DOI":"10.1007\/3-540-64383-4_25"},{"key":"49_CR32","unstructured":"The UCR time series classification archive. http:\/\/www.springer.com\/lncs. Accessed 27 June 2020"},{"key":"49_CR33","unstructured":"UCI machine learning repository. http:\/\/archive.ics.uci.edu\/ml. Accessed 27 June 2020"},{"issue":"1","key":"49_CR34","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1179\/caj.1993.30.1.46","volume":"30","author":"M Visvalingam","year":"1993","unstructured":"Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of points. Cartograph. J. 30(1), 46\u201351 (1993)","journal-title":"Cartograph. J."},{"key":"49_CR35","doi-asserted-by":"crossref","unstructured":"Welch, W.: Algorithmic complexity: three NP-hard problems in computational statistics. J. Stat. Comput. Simul. 15, 17\u201325 (1982)","DOI":"10.1080\/00949658208810560"},{"key":"49_CR36","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ins.2015.09.017","volume":"345","author":"H Zhao","year":"2016","unstructured":"Zhao, H., Dong, Z., Li, T., Wang, X., Pang, C.: Segmenting time series with connected lines under maximum error bound. Inf. Sci. 345, 1\u20138 (2016)","journal-title":"Inf. Sci."},{"key":"49_CR37","doi-asserted-by":"crossref","unstructured":"Zordan, D., Mart\u00ednez, B., Vilajosana, I., Rossi, M.: On the performance of Lossy compression schemes for energy constrained sensor networking. ACM Trans. Sens. Netw. 11(1), 15:1\u201315:34 (2014)","DOI":"10.1145\/2629660"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_49","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:36:13Z","timestamp":1710250573000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_49"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":37,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_49","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}