{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:50:29Z","timestamp":1726105829991},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_44","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"532-543","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A Deep Time Series Forecasting Method Integrated with Local-Context Sensitive Features"],"prefix":"10.1007","author":[{"given":"Tianyi","family":"Chen","sequence":"first","affiliation":[]},{"given":"Canghong","family":"Jin","sequence":"additional","affiliation":[]},{"given":"Tengran","family":"Dong","sequence":"additional","affiliation":[]},{"given":"Dongkai","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"44_CR1","doi-asserted-by":"crossref","unstructured":"Cho, C.H., Lee, G.Y., Tsai, Y.L., Lan, K.C.: Toward stock price prediction using deep learning. In: Proceedings of UCC, pp. 133\u2013135 (2019)","DOI":"10.1145\/3368235.3369367"},{"key":"44_CR2","doi-asserted-by":"crossref","unstructured":"Cirstea, R.G., Micu, D.V., Muresan, G.M., Guo, C., Yang, B.: Correlated time series forecasting using multi-task deep neural networks. In: Proceedings of CIKM, pp. 1527\u20131530 (2018)","DOI":"10.1145\/3269206.3269310"},{"key":"44_CR3","doi-asserted-by":"crossref","unstructured":"Dau, H.A., Begum, N., Keogh, E.: Semi-supervision dramatically improves time series clustering under dynamic time warping. In: Proceedings of CIKM, pp. 999\u20131008 (2016)","DOI":"10.1145\/2983323.2983855"},{"key":"44_CR4","doi-asserted-by":"crossref","unstructured":"Farha, Y.A., Gall, J.: Ms-tcn: multi-stage temporal convolutional network for action segmentation. In: Proceedings of ICPR, pp. 3575\u20133584 (2019)","DOI":"10.1109\/CVPR.2019.00369"},{"key":"44_CR5","doi-asserted-by":"crossref","unstructured":"Fu, R., Zhang, Z., Li, L.: Using lstm and gru neural network methods for traffic flow prediction. In: Proceedings of YAC, pp. 324\u2013328 (2016)","DOI":"10.1109\/YAC.2016.7804912"},{"key":"44_CR6","doi-asserted-by":"crossref","unstructured":"Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: proceedings of ICPR, pp. 156\u2013165 (2017)","DOI":"10.1109\/CVPR.2017.113"},{"key":"44_CR7","doi-asserted-by":"crossref","unstructured":"Li, C.E., Chang, Y.I.: A time-position join method for periodicity mining in time series databases. In: Proceedings of ICS, pp. 294\u2013299 (2016)","DOI":"10.1109\/ICS.2016.0066"},{"key":"44_CR8","doi-asserted-by":"crossref","unstructured":"Li, D., Bissyande, T.F.D.A., Klein, J., Le Traon, Y.: Time series classification with discrete wavelet transformed data: insights from an empirical study. In: Proceedings of SEKE (2016)","DOI":"10.18293\/SEKE2016-067"},{"key":"44_CR9","unstructured":"Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In: Proceedings of NIPS, pp. 5243\u20135253 (2019)"},{"key":"44_CR10","doi-asserted-by":"crossref","unstructured":"Li, Z., Zhang, H., Wu, S., Zhao, Y.: Similarity measure of time series based on feature extraction. In: Proceedings of ICCCBDA, pp. 13\u201316 (2020)","DOI":"10.1109\/ICCCBDA49378.2020.9095654"},{"key":"44_CR11","doi-asserted-by":"crossref","unstructured":"Liu, Y., Dong, H., Wang, X., Han, S.: Time series prediction based on temporal convolutional network. In: Proceedings of ICIS, pp. 300\u2013305 (2019)","DOI":"10.1109\/ICIS46139.2019.8940265"},{"key":"44_CR12","first-page":"89","volume":"89","author":"P Malhotra","year":"2015","unstructured":"Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. Proc. ESANN 89, 89\u201394 (2015)","journal-title":"Proc. ESANN"},{"key":"44_CR13","unstructured":"van den Oord, A., et al: A generative model for raw audio. In: Proceedings of ISCASSW, pp. 125\u2013125 (2016)"},{"key":"44_CR14","doi-asserted-by":"crossref","unstructured":"Rodrigues, M.W., Z\u00e1rate, L.E.: Time series analysis using synthetic data for monitoring the temporal behavior of sensor signals. In: Proceedings of SMC, pp. 453\u2013458 (2019)","DOI":"10.1109\/SMC.2019.8913907"},{"key":"44_CR15","doi-asserted-by":"crossref","unstructured":"Siami-Namini, S., Tavakoli, N., Siami Namin, A.: A comparison of arima and lstm in forecasting time series. In: Proceedings of ICMLA, pp. 1394\u20131401 (2018)","DOI":"10.1109\/ICMLA.2018.00227"},{"key":"44_CR16","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1007\/978-3-319-94120-2_12","volume-title":"International Joint Conference SOCO\u201918-CISIS\u201918-ICEUTE\u201918","author":"JF Torres","year":"2019","unstructured":"Torres, J.F., Troncoso, A., Koprinska, I., Wang, Z., Mart\u00ednez-\u00c1lvarez, F.: Deep learning for big data time series forecasting applied to solar power. In: Grana, M., et al. (eds.) SOCO\u201918-CISIS\u201918-ICEUTE\u201918 2018. AISC, vol. 771, pp. 123\u2013133. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-319-94120-2_12"},{"key":"44_CR17","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Proceedings of NIPS, pp. 5998\u20136008 (2017)"},{"key":"44_CR18","doi-asserted-by":"crossref","unstructured":"Vijesh, V., Drisya, G.V., Kumar, K.S.: Network based periodicity detection of a time series. In: Proceedings of RAICS, pp. 199\u2013203 (2018)","DOI":"10.1109\/RAICS.2018.8634897"},{"key":"44_CR19","doi-asserted-by":"crossref","unstructured":"Wang, J., Wang, Z., Li, J., Wu, J.: Multilevel wavelet decomposition network for interpretable time series analysis. In: Proceedings of CIKM, pp. 2437\u20132446 (2018)","DOI":"10.1145\/3219819.3220060"},{"key":"44_CR20","doi-asserted-by":"crossref","unstructured":"Wang, L., Zhou, L., Xu, G., Li, X.: Date-compensated discrete fourier transform for periodicity detection in unevenly astronomical time series. In: Proceedings of AIPC, vol. 2073 (2019)","DOI":"10.1063\/1.5090742"},{"key":"44_CR21","unstructured":"Wang, Y., Liu, Z., Hu, D., Zhang, M.: Multivariate time series prediction based on optimized temporal convolutional networks with stacked auto-encoders. In: Proceedings of ACML, pp. 157\u2013172 (2019)"},{"key":"44_CR22","doi-asserted-by":"crossref","unstructured":"Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of AAAI (2018)","DOI":"10.1609\/aaai.v32i1.12328"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_44","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:36:58Z","timestamp":1710250618000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_44"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_44","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}