{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:50:30Z","timestamp":1726105830849},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_43","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"519-531","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["3ETS+RD-LSTM: A New Hybrid Model for Electrical Energy Consumption Forecasting"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2285-0327","authenticated-orcid":false,"given":"Grzegorz","family":"Dudek","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2609-811X","authenticated-orcid":false,"given":"Pawe\u0142","family":"Pe\u0142ka","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2548-6695","authenticated-orcid":false,"given":"Slawek","family":"Smyl","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"43_CR1","unstructured":"Dudek, G., Pe\u0142ka, P., Smyl, S.: A hybrid residual dilated LSTM end exponential smoothing model for mid-term electric load forecasting. arXiv preprint arXiv:2004.00508 (2020)"},{"issue":"2","key":"43_CR2","doi-asserted-by":"publisher","first-page":"1223","DOI":"10.1016\/j.rser.2011.08.014","volume":"16","author":"L Suganthi","year":"2002","unstructured":"Suganthi, L., Samuel, A.-A.: Energy models for demand forecasting - a review. Renew. Sust. Energ. Rev. 16(2), 1223\u20131240 (2002)","journal-title":"Renew. Sust. Energ. Rev."},{"key":"43_CR3","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1016\/S0142-0615(00)00035-1","volume":"23","author":"EH Barakat","year":"2001","unstructured":"Barakat, E.H.: Modeling of nonstationary time-series data. Part II. Dynamic periodic trends. Int. J. Elec. Power 23, 63\u201368 (2001)","journal-title":"Int. J. Elec. Power"},{"key":"43_CR4","doi-asserted-by":"publisher","first-page":"3135","DOI":"10.1016\/j.enconman.2008.06.004","volume":"49","author":"E Gonz\u00e1lez-Romera","year":"2008","unstructured":"Gonz\u00e1lez-Romera, E., Jaramillo-Mor\u00e1n, M.-A., Carmona-Fern\u00e1ndez, D.: Monthly electric energy demand forecasting with neural networks and Fourier series. Energ. Convers. Manage. 49, 3135\u20133142 (2008)","journal-title":"Energ. Convers. Manage."},{"issue":"1","key":"43_CR5","doi-asserted-by":"publisher","first-page":"31","DOI":"10.3390\/info8010031","volume":"8","author":"JF Chen","year":"2017","unstructured":"Chen, J.F., Lo, S.K., Do, Q.H.: Forecasting monthly electricity demands: an application of neural networks trained by heuristic algorithms. Information 8(1), 31 (2017)","journal-title":"Information"},{"key":"43_CR6","doi-asserted-by":"crossref","unstructured":"Gavrilas, M, Ciutea, I, Tanasa, C.: Medium-term load forecasting with artificial neural network models. In: IEEE Conference on Electricity Distribution Publication, vol. 6 (2001)","DOI":"10.1049\/cp:20010930"},{"issue":"2","key":"43_CR7","doi-asserted-by":"publisher","first-page":"538","DOI":"10.1109\/59.761878","volume":"14","author":"E Doveh","year":"1999","unstructured":"Doveh, E., Feigin, P., Hyams, L.: Experience with FNN models for medium term power demand predictions. IEEE Trans. Power Syst. 14(2), 538\u2013546 (1999)","journal-title":"IEEE Trans. Power Syst."},{"key":"43_CR8","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"218","DOI":"10.1007\/978-3-319-99996-8_20","volume-title":"Information Systems Architecture and Technology","author":"P Pe\u0142ka","year":"2019","unstructured":"Pe\u0142ka, P., Dudek, G.: Medium-term electric energy demand forecasting using generalized regression neural network. In: \u015awiatek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2018. AISC, vol. 853, pp. 218\u2013227. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-319-99996-8_20"},{"key":"43_CR9","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1016\/j.ijepes.2010.08.008","volume":"33","author":"C Pei-Chann","year":"2011","unstructured":"Pei-Chann, C., Chin-Yuan, F., Jyun-Jie, L.: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Int. J. Elec. Power 33, 17\u201327 (2011)","journal-title":"Int. J. Elec. Power"},{"key":"43_CR10","doi-asserted-by":"publisher","first-page":"1008","DOI":"10.1016\/j.energy.2018.07.084","volume":"160","author":"T Ahmad","year":"2018","unstructured":"Ahmad, T., Chen, H.: Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment. Energy 160, 1008\u20131020 (2018)","journal-title":"Energy"},{"key":"43_CR11","unstructured":"Hewamalage, H., Bergmeir, C., Bandara, K.: Recurrent neural networks for time series forecasting: current status and future directions. arXiv preprint arXiv:1909.00590v3 (2019)"},{"issue":"11","key":"43_CR12","doi-asserted-by":"publisher","first-page":"3089","DOI":"10.3390\/en11113089","volume":"11","author":"K Yan","year":"2018","unstructured":"Yan, K., Wang, X., Du, Y., Jin, N., Huang, H., Zhou, H.: Multi-step short-term power consumption forecasting with a hybrid deep learning strategy. Energies 11(11), 3089 (2018)","journal-title":"Energies"},{"key":"43_CR13","doi-asserted-by":"publisher","first-page":"49144","DOI":"10.1109\/ACCESS.2018.2867681","volume":"6","author":"J Bedi","year":"2018","unstructured":"Bedi, J., Toshniwal, D.: Empirical mode decomposition based deep learning for electricity demand forecasting. IEEE Access 6, 49144\u201349156 (2018)","journal-title":"IEEE Access"},{"issue":"8","key":"43_CR14","doi-asserted-by":"publisher","first-page":"1168","DOI":"10.3390\/en10081168","volume":"10","author":"H Zheng","year":"2017","unstructured":"Zheng, H., Yuan, J., Chen, L.: Short-term load forecasting using EMD-LSTM neural networks with a XGBboost algorithm for feature importance evaluation. Energies 10(8), 1168 (2017)","journal-title":"Energies"},{"key":"43_CR15","doi-asserted-by":"crossref","unstructured":"Narayan, A., Hipel, K.-W.: Long short term memory networks for short-term electric load forecasting. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2573\u20132578 (2017)","DOI":"10.1109\/SMC.2017.8123012"},{"issue":"4","key":"43_CR16","doi-asserted-by":"publisher","first-page":"802","DOI":"10.1016\/j.ijforecast.2018.06.001","volume":"34","author":"S Makridakis","year":"2018","unstructured":"Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 competition: results, findings, conclusion and way forward. Int. J. Forecast. 34(4), 802\u2013808 (2018)","journal-title":"Int. J. Forecast."},{"issue":"1","key":"43_CR17","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.ijforecast.2019.03.017","volume":"36","author":"S Smyl","year":"2020","unstructured":"Smyl, S.: A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. Int. J. Forecast. 36(1), 75\u201385 (2020)","journal-title":"Int. J. Forecast."},{"key":"43_CR18","doi-asserted-by":"crossref","unstructured":"Dudek, G., Pe\u0142ka, P.: Pattern similarity-based machine learning methods for mid-term load forecasting: a comparative study. arXiv preprint arXiv:2003.01475 (2020)","DOI":"10.1016\/j.asoc.2021.107223"},{"key":"43_CR19","doi-asserted-by":"publisher","unstructured":"Pelka, P., Dudek, G.: Pattern-based long short-term memory for mid-term electrical load forecasting. In: 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom, pp. 1\u20138 (2020). https:\/\/doi.org\/10.1109\/IJCNN48605.2020.9206895","DOI":"10.1109\/IJCNN48605.2020.9206895"},{"key":"43_CR20","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-71918-2","volume-title":"Forecasting with Exponential Smoothing: The State Space Approach","author":"R-J Hyndman","year":"2008","unstructured":"Hyndman, R.-J., Koehler, A.-B., Ord, J.-K., Snyder, R.-D.: Forecasting with Exponential Smoothing: The State Space Approach. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-71918-2"},{"key":"43_CR21","unstructured":"Oreshkin, B.-N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437v4 (2020)"},{"key":"43_CR22","unstructured":"Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., et al.: Dilated recurrent neural networks. arXiv preprint arXiv:1710.02224 (2017)"},{"key":"43_CR23","doi-asserted-by":"crossref","unstructured":"Kim, J., El-Khamy, M., Lee, J.: Residual LSTM: design of a deep recurrent architecture for distant speech recognition. arXiv preprint arXiv:1701.03360 (2017)","DOI":"10.21437\/Interspeech.2017-477"},{"key":"43_CR24","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"663","DOI":"10.1007\/978-3-030-20912-4_60","volume-title":"Artificial Intelligence and Soft Computing","author":"P Pe\u0142ka","year":"2019","unstructured":"Pe\u0142ka, P., Dudek, G.: Pattern-based forecasting monthly electricity demand using multilayer perceptron. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 663\u2013672. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-20912-4_60"},{"key":"43_CR25","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1007\/978-3-319-67220-5_4","volume-title":"Information Systems Architecture and Technology","author":"P Pe\u0142ka","year":"2018","unstructured":"Pe\u0142ka, P., Dudek, G.: Neuro-fuzzy system for medium-term electric energy demand forecasting. In: Borzemski, L., \u015awiatek, J., Wilimowska, Z. (eds.) ISAT 2017. AISC, vol. 655, pp. 38\u201347. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-67220-5_4"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_43","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:35:32Z","timestamp":1710250532000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_43"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_43","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}