{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T11:14:09Z","timestamp":1744283649991,"version":"3.40.3"},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_41","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"491-503","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Match4Rec: A Novel Recommendation Algorithm Based on Bidirectional Encoder Representation with the Matching Task"],"prefix":"10.1007","author":[{"given":"Lingxiao","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Jiangpeng","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Yujiu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Li","family":"Xiu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"41_CR1","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1007\/978-1-4899-7637-6_3","volume-title":"Recommender Systems Handbook","author":"Y Koren","year":"2015","unstructured":"Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 77\u2013118. Springer, Boston (2015). https:\/\/doi.org\/10.1007\/978-1-4899-7637-6_3"},{"key":"41_CR2","doi-asserted-by":"crossref","unstructured":"Wang, S., Hu, L., et al.: Sequential recommender systems: challenges, progress and prospects. In: IJCAI, pp. 6332\u20136338. Morgan Kaufmann, Macao (2019)","DOI":"10.24963\/ijcai.2019\/883"},{"key":"41_CR3","doi-asserted-by":"crossref","unstructured":"Rendle, S., Freudenthaler, C., Thieme, L.S.: Factorizing personalized Markov chains for next-basket recommendation. In: WWW, pp. 811\u2013820. ACM, New York (2010)","DOI":"10.1145\/1772690.1772773"},{"key":"41_CR4","doi-asserted-by":"crossref","unstructured":"Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommendations. In: CIKM, pp. 843\u2013852. ACM, New York (2018)","DOI":"10.1145\/3269206.3271761"},{"key":"41_CR5","doi-asserted-by":"crossref","unstructured":"Kang, W.C., Julian, M.: Self-attentive sequential recommendation. In: ICDM, pp. 197\u2013206. IEEE, Singapore (2018)","DOI":"10.1109\/ICDM.2018.00035"},{"key":"41_CR6","doi-asserted-by":"crossref","unstructured":"Sun, F., Liu, J., et al.: BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer. In: CIKM, Beijing, China, pp. 1441\u20131450. ACM (2019)","DOI":"10.1145\/3357384.3357895"},{"key":"41_CR7","doi-asserted-by":"crossref","unstructured":"Xu, J., He, X., Li, H.: Deep learning for matching in search and recommendation. In: SIGIR, Ann Arbor, USA, pp. 1365\u20131368. ACM (2018)","DOI":"10.1145\/3209978.3210181"},{"key":"41_CR8","unstructured":"Devlin, J., Chang, M.W., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, NAACL, New Orleans, USA (2018)"},{"key":"41_CR9","unstructured":"Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: ICML, Beijing, China. ACM (2014)"},{"key":"41_CR10","doi-asserted-by":"crossref","unstructured":"Kim, D., Park, C., et al.: Convolutional matrix factorization for document context-aware recommendation. In: RecSys, pp. 233\u2013240. ACM, New York (2016)","DOI":"10.1145\/2959100.2959165"},{"key":"41_CR11","doi-asserted-by":"crossref","unstructured":"Kang, W.C., Fang, C., et al.: Visually-aware fashion recommendation and design with generative image models. In: ICDM, New Orleans, USA, pp. 207\u2013216. IEEE (2017)","DOI":"10.1109\/ICDM.2017.30"},{"key":"41_CR12","unstructured":"Oord, A.v.d., Dieleman, S., Schrauwen, B.: Deep content-based music recommendation. In: NIPS, pp. 2643\u20132651. MIT Press, Lake Tahoe (2013)"},{"key":"41_CR13","doi-asserted-by":"crossref","unstructured":"He, X., Liao, L., et al.: Neural collaborative filtering. In: WWW, Perth, Australia, pp. 173\u2013182. ACM (2017)","DOI":"10.1145\/3038912.3052569"},{"key":"41_CR14","doi-asserted-by":"crossref","unstructured":"Sedhain, S., Menon, A.K., et al.: AutoRec: autoencoders meet collaborative filtering. In: WWW, pp. 111\u2013112. ACM, New York (2015)","DOI":"10.1145\/2740908.2742726"},{"key":"41_CR15","doi-asserted-by":"crossref","unstructured":"Wu, Y., DuBois, C., et al.: Collaborative denoising auto-encoders for top-N recommender systems. In: WSDM, pp. 153\u2013162. ACM, New York (2016)","DOI":"10.1145\/2835776.2835837"},{"key":"41_CR16","doi-asserted-by":"crossref","unstructured":"Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolutional sequence embedding. In: WSDM, Marina Del Rey, USA, pp. 565\u2013573. ACM (2018)","DOI":"10.1145\/3159652.3159656"},{"key":"41_CR17","unstructured":"Vaswani, A., Shazeer, N., et al.: Attention is all you need. In: NIPS, pp. 5998\u20136008. MIT Press, Long Beach (2017)"},{"key":"41_CR18","doi-asserted-by":"crossref","unstructured":"McAuley, J., Targett, C., et al.: Image-based recommendations on styles and substitutes. In: SIGIR, pp. 43\u201352. ACM, New York (2015)","DOI":"10.1145\/2766462.2767755"},{"issue":"4","key":"41_CR19","first-page":"19:1","volume":"5","author":"FM Harper","year":"2015","unstructured":"Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19:1\u201319:19 (2015)","journal-title":"ACM Trans. Interact. Intell. Syst."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:35:28Z","timestamp":1710250528000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_41","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}