{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:49:47Z","timestamp":1726105787561},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_4","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"38-48","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Enhancer-DSNet: A Supervisedly Prepared Enriched Sequence Representation for the Identification of Enhancers and Their Strength"],"prefix":"10.1007","author":[{"given":"Muhammad Nabeel","family":"Asim","sequence":"first","affiliation":[]},{"given":"Muhammad Ali","family":"Ibrahim","sequence":"additional","affiliation":[]},{"given":"Muhammad Imran","family":"Malik","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Dengel","sequence":"additional","affiliation":[]},{"given":"Sheraz","family":"Ahmed","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"4_CR1","unstructured":"Almeida, F., Xex\u00e9o, G.: Word embeddings: a survey. arXiv preprint arXiv:1901.09069 (2019)"},{"key":"4_CR2","unstructured":"Bepler, T., Berger, B.: Learning protein sequence embeddings using information from structure. arXiv preprint arXiv:1902.08661 (2019)"},{"issue":"3","key":"4_CR3","doi-asserted-by":"publisher","first-page":"456","DOI":"10.1101\/gr.112656.110","volume":"21","author":"AP Boyle","year":"2011","unstructured":"Boyle, A.P., et al.: High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res. 21(3), 456\u2013464 (2011)","journal-title":"Genome Res."},{"issue":"1","key":"4_CR4","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001)","journal-title":"Mach. Learn."},{"issue":"12","key":"4_CR5","doi-asserted-by":"publisher","first-page":"418","DOI":"10.1186\/s12859-017-1828-0","volume":"18","author":"H Bu","year":"2017","unstructured":"Bu, H., Gan, Y., Wang, Y., Zhou, S., Guan, J.: A new method for enhancer prediction based on deep belief network. BMC Bioinformatics 18(12), 418 (2017)","journal-title":"BMC Bioinformatics"},{"issue":"3","key":"4_CR6","doi-asserted-by":"publisher","first-page":"423","DOI":"10.1007\/s00726-006-0485-9","volume":"33","author":"J Chen","year":"2007","unstructured":"Chen, J., Liu, H., Yang, J., Chou, K.C.: Prediction of linear b-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33(3), 423\u2013428 (2007)","journal-title":"Amino Acids"},{"issue":"7345","key":"4_CR7","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1038\/nature09906","volume":"473","author":"J Ernst","year":"2011","unstructured":"Ernst, J., et al.: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345), 43\u201349 (2011)","journal-title":"Nature"},{"issue":"6","key":"4_CR8","doi-asserted-by":"publisher","first-page":"e1003677","DOI":"10.1371\/journal.pcbi.1003677","volume":"10","author":"GD Erwin","year":"2014","unstructured":"Erwin, G.D., et al.: Integrating diverse datasets improves developmental enhancer prediction. PLoS Comput. Biol. 10(6), e1003677 (2014)","journal-title":"PLoS Comput. Biol."},{"issue":"13","key":"4_CR9","doi-asserted-by":"publisher","first-page":"1579","DOI":"10.1093\/bioinformatics\/btq248","volume":"26","author":"HA Firpi","year":"2010","unstructured":"Firpi, H.A., Ucar, D., Tan, K.: Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics 26(13), 1579\u20131586 (2010)","journal-title":"Bioinformatics"},{"issue":"4","key":"4_CR10","doi-asserted-by":"publisher","first-page":"767","DOI":"10.1039\/C7MB00054E","volume":"13","author":"W He","year":"2017","unstructured":"He, W., Jia, C.: EnhancerPred2.0: predicting enhancers and their strength based on position-specific trinucleotide propensity and electron-ion interaction potential feature selection. Mol. Biosyst. 13(4), 767\u2013774 (2017)","journal-title":"Mol. Biosyst."},{"issue":"6","key":"4_CR11","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1016\/j.gde.2009.09.006","volume":"19","author":"ND Heintzman","year":"2009","unstructured":"Heintzman, N.D., Ren, B.: Finding distal regulatory elements in the human genome. Curr. Opin. Genet. Dev. 19(6), 541\u2013549 (2009)","journal-title":"Curr. Opin. Genet. Dev."},{"key":"4_CR12","doi-asserted-by":"publisher","first-page":"38741","DOI":"10.1038\/srep38741","volume":"6","author":"C Jia","year":"2016","unstructured":"Jia, C., He, W.: EnhancerPred: a predictor for discovering enhancers based on the combination and selection of multiple features. Sci. Rep. 6, 38741 (2016)","journal-title":"Sci. Rep."},{"key":"4_CR13","doi-asserted-by":"crossref","first-page":"251686571984609","DOI":"10.1177\/2516865719846093","volume":"12","author":"JCF de Lara","year":"2019","unstructured":"de Lara, J.C.F., Arzate-Mej\u00eda, R.G., Recillas-Targa, F.: Enhancer RNAs: insights into their biological role. Epigenetics Insights 12, 2516865719846093 (2019)","journal-title":"Epigenetics Insights"},{"key":"4_CR14","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.ab.2019.02.017","volume":"571","author":"NQK Le","year":"2019","unstructured":"Le, N.Q.K., Yapp, E.K.Y., Ho, Q.T., Nagasundaram, N., Ou, Y.Y., Yeh, H.Y.: iEnhancer-5Step: identifying enhancers using hidden information of DNA sequences via Chou\u2019s 5-step rule and word embedding. Anal. Biochem. 571, 53\u201361 (2019)","journal-title":"Anal. Biochem."},{"issue":"3","key":"4_CR15","doi-asserted-by":"publisher","first-page":"362","DOI":"10.1093\/bioinformatics\/btv604","volume":"32","author":"B Liu","year":"2016","unstructured":"Liu, B., Fang, L., Long, R., Lan, X., Chou, K.C.: iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics 32(3), 362\u2013369 (2016)","journal-title":"Bioinformatics"},{"issue":"22","key":"4_CR16","doi-asserted-by":"publisher","first-page":"3835","DOI":"10.1093\/bioinformatics\/bty458","volume":"34","author":"B Liu","year":"2018","unstructured":"Liu, B., Li, K., Huang, D.S., Chou, K.C.: iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics 34(22), 3835\u20133842 (2018)","journal-title":"Bioinformatics"},{"issue":"1","key":"4_CR17","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1093\/bioinformatics\/btx579","volume":"34","author":"B Liu","year":"2018","unstructured":"Liu, B., Yang, F., Huang, D.S., Chou, K.C.: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics 34(1), 33\u201340 (2018)","journal-title":"Bioinformatics"},{"key":"4_CR18","unstructured":"Ng, P.: dna2vec: consistent vector representations of variable-length k-mers. arXiv preprint arXiv:1701.06279 (2017)"},{"issue":"2\u20139","key":"4_CR19","first-page":"175","volume":"9","author":"N Omar","year":"2017","unstructured":"Omar, N., Wong, Y.S., Li, X., Chong, Y.L., Abdullah, M.T., Lee, N.K.: Enhancer prediction in proboscis monkey genome: a comparative study. J. Telecommun. Electron. Comput. Eng. (JTEC) 9(2\u20139), 175\u2013179 (2017)","journal-title":"J. Telecommun. Electron. Comput. Eng. (JTEC)"},{"issue":"3","key":"4_CR20","doi-asserted-by":"publisher","first-page":"e1002968","DOI":"10.1371\/journal.pcbi.1002968","volume":"9","author":"N Rajagopal","year":"2013","unstructured":"Rajagopal, N., et al.: RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLoS Comput. Biol. 9(3), e1002968 (2013)","journal-title":"PLoS Comput. Biol."},{"issue":"7","key":"4_CR21","doi-asserted-by":"publisher","first-page":"767","DOI":"10.3390\/cells8070767","volume":"8","author":"KK Tan","year":"2019","unstructured":"Tan, K.K., Le, N.Q.K., Yeh, H.Y., Chua, M.C.H.: Ensemble of deep recurrent neural networks for identifying enhancers via dinucleotide physicochemical properties. Cells 8(7), 767 (2019)","journal-title":"Cells"},{"issue":"7231","key":"4_CR22","doi-asserted-by":"publisher","first-page":"854","DOI":"10.1038\/nature07730","volume":"457","author":"A Visel","year":"2009","unstructured":"Visel, A., et al.: ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457(7231), 854\u2013858 (2009)","journal-title":"Nature"},{"key":"4_CR23","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1016\/j.jbi.2018.09.008","volume":"87","author":"Y Wang","year":"2018","unstructured":"Wang, Y., et al.: A comparison of word embeddings for the biomedical natural language processing. J. Biomed. Inform. 87, 12\u201320 (2018)","journal-title":"J. Biomed. Inform."},{"issue":"13","key":"4_CR24","doi-asserted-by":"publisher","first-page":"1930","DOI":"10.1093\/bioinformatics\/btx105","volume":"33","author":"B Yang","year":"2017","unstructured":"Yang, B., et al.: BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics 33(13), 1930\u20131936 (2017)","journal-title":"Bioinformatics"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:46:38Z","timestamp":1710251198000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}