{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:52:22Z","timestamp":1726408342785},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_36","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"432-443","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Feature Aware and Bilinear Feature Equal Interaction Network for Click-Through Rate Prediction"],"prefix":"10.1007","author":[{"given":"Lang","family":"Luo","sequence":"first","affiliation":[]},{"given":"Yufei","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xianhui","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Qiujun","family":"Deng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"36_CR1","doi-asserted-by":"crossref","unstructured":"Cheng, H.T., Koc, L., Harmsen, J., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7\u201310 (2016)","DOI":"10.1145\/2988450.2988454"},{"key":"36_CR2","unstructured":"Graepel, T., Candela, J.Q., Borchert, T., et al.: Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft\u2019s Bing search engine. Omnipress (2010)"},{"key":"36_CR3","doi-asserted-by":"crossref","unstructured":"He, X., Pan, J., Jin, O., et al.: Practical lessons from predicting clicks on ads at Facebook. In: Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, pp. 1\u20139 (2014)","DOI":"10.1145\/2648584.2648589"},{"key":"36_CR4","doi-asserted-by":"crossref","unstructured":"Davidson, J., Liebald, B., Liu, J., et al.: The YouTube video recommendation system. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 293\u2013296 (2010)","DOI":"10.1145\/1864708.1864770"},{"issue":"4","key":"36_CR5","doi-asserted-by":"publisher","first-page":"305","DOI":"10.1007\/s00799-015-0156-0","volume":"17","author":"J Beel","year":"2016","unstructured":"Beel, J., Gipp, B., Langer, S., et al.: Research-paper recommender systems: a literature survey. Int. J. Digit. Libr. 17(4), 305\u2013338 (2016). https:\/\/doi.org\/10.1007\/s00799-015-0156-0","journal-title":"Int. J. Digit. Libr."},{"key":"36_CR6","volume-title":"Logistic Regression","author":"DG Kleinbaum","year":"2002","unstructured":"Kleinbaum, D.G., Dietz, K., Gail, M., et al.: Logistic Regression. Springer, New York (2002)"},{"key":"36_CR7","doi-asserted-by":"crossref","unstructured":"Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995\u20131000. IEEE (2010)","DOI":"10.1109\/ICDM.2010.127"},{"key":"36_CR8","doi-asserted-by":"crossref","unstructured":"Juan, Y., Zhuang, Y., Chin, W.S., et al.: Field-aware factorization machines for CTR prediction. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 43\u201350 (2016)","DOI":"10.1145\/2959100.2959134"},{"key":"36_CR9","doi-asserted-by":"crossref","unstructured":"Xiao, J., Ye, H, He, X., et al.: Attentional factorization machines: learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617 (2017)","DOI":"10.24963\/ijcai.2017\/435"},{"key":"36_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1007\/978-3-319-30671-1_4","volume-title":"Advances in Information Retrieval","author":"W Zhang","year":"2016","unstructured":"Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45\u201357. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-30671-1_4"},{"key":"36_CR11","doi-asserted-by":"crossref","unstructured":"Guo, H., Tang, R., Ye, Y., et al.: DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017)","DOI":"10.24963\/ijcai.2017\/239"},{"key":"36_CR12","doi-asserted-by":"crossref","unstructured":"He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 355\u2013364 (2017)","DOI":"10.1145\/3077136.3080777"},{"key":"36_CR13","doi-asserted-by":"crossref","unstructured":"Wang, R., Fu, B., Fu, G., et al.: Deep & cross network for ad click predictions. In: Proceedings of the ADKDD 2017, pp. 1\u20137 (2017)","DOI":"10.1145\/3124749.3124754"},{"key":"36_CR14","doi-asserted-by":"crossref","unstructured":"Lian, J., Zhou, X., Zhang, F., et al.: xDeepFM: combining explicit and implicit feature interactions for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1754\u20131763 (2018)","DOI":"10.1145\/3219819.3220023"},{"key":"36_CR15","doi-asserted-by":"crossref","unstructured":"Huang, T., Zhang, Z., Zhang, J.: FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 169\u2013177 (2019)","DOI":"10.1145\/3298689.3347043"},{"key":"36_CR16","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"36_CR17","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"36_CR18","doi-asserted-by":"crossref","unstructured":"Linsley, D., Scheibler, D., Eberhardt, S., et al.: Global-and-local attention networks for visual recognition. arXiv preprint arXiv:1805.08819 (2018)","DOI":"10.32470\/CCN.2018.1113-0"},{"issue":"Jul","key":"36_CR19","first-page":"2121","volume":"12","author":"J Duchi","year":"2011","unstructured":"Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(Jul), 2121\u20132159 (2011)","journal-title":"J. Mach. Learn. Res."},{"key":"36_CR20","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"issue":"1","key":"36_CR21","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava, N., Hinton, G., Krizhevsky, A., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929\u20131958 (2014)","journal-title":"J. Mach. Learn. Res."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_36","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:33:28Z","timestamp":1710250408000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_36"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_36","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}