{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:50:12Z","timestamp":1726105812886},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_31","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"366-379","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["VAEPP: Variational Autoencoder with a Pull-Back Prior"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8852-675X","authenticated-orcid":false,"given":"Wenxiao","family":"Chen","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4614-7545","authenticated-orcid":false,"given":"Wenda","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1965-2060","authenticated-orcid":false,"given":"Zhenting","family":"Cai","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2841-5788","authenticated-orcid":false,"given":"Haowen","family":"Xu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5113-838X","authenticated-orcid":false,"given":"Dan","family":"Pei","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"31_CR1","unstructured":"Arjovsky, M., Chintala, S., et al.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214\u2013223 (2017)"},{"key":"31_CR2","unstructured":"Bauer, M., Mnih, A.: Resampled priors for variational autoencoders. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 66\u201375 (2019)"},{"key":"31_CR3","unstructured":"Chen, X., Mishra, N., et al.: PixelSNAIL: an improved autoregressive generative model. In: International Conference on Machine Learning, pp. 863\u2013871 (2018)"},{"key":"31_CR4","unstructured":"Dai, B., Wipf, P.D.: Diagnosing and enhancing VAE models. In: ICLR (2019)"},{"key":"31_CR5","unstructured":"Gelfand, I.M., Silverman, R.A., et al.: Calculus of variations. Courier Corporation (2000)"},{"key":"31_CR6","unstructured":"Goodfellow, I., Pouget-Abadie, J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672\u20132680 (2014)"},{"key":"31_CR7","unstructured":"Gulrajani, I., Ahmed, F., et al.: Improved training of Wasserstein GANs. In: NIPS (2017)"},{"key":"31_CR8","unstructured":"Heusel, M., Ramsauer, H., et al.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626\u20136637 (2017)"},{"key":"31_CR9","unstructured":"Hoffman, M.D., Johnson, M.J.: Elbo surgery: yet another way to carve up the variational evidence lower bound. In: Workshop in Advances in Approximate Bayesian Inference, NIPS, vol. 1 (2016)"},{"key":"31_CR10","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)"},{"key":"31_CR11","unstructured":"Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1\u00a0$$\\times $$\u00a01 convolutions. In: Advances in Neural Information Processing Systems, pp. 10215\u201310224 (2018)"},{"key":"31_CR12","unstructured":"Kingma, D.P., Salimans, T., et al.: Improved variational inference with inverse autoregressive flow. In: Advances in Neural Information Processing Systems, pp. 4743\u20134751 (2016)"},{"key":"31_CR13","unstructured":"Kumar, R., Goyal, A., et al.: Maximum entropy generators for energy-based models. arXiv preprint arXiv:1901.08508 (2019)"},{"issue":"6266","key":"31_CR14","doi-asserted-by":"publisher","first-page":"1332","DOI":"10.1126\/science.aab3050","volume":"350","author":"BM Lake","year":"2015","unstructured":"Lake, B.M., Salakhutdinov, R., et al.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332\u20131338 (2015)","journal-title":"Science"},{"key":"31_CR15","unstructured":"Larochelle, H., Murray, I.: The neural autoregressive distribution estimator. In: AISTATS, pp. 29\u201337 (2011)"},{"key":"31_CR16","doi-asserted-by":"crossref","unstructured":"Liu, Z., Luo, P., et al.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730\u20133738 (2015)","DOI":"10.1109\/ICCV.2015.425"},{"key":"31_CR17","unstructured":"Maal\u00f8e, L., Fraccaro, M., et al.: BIVA: a very deep hierarchy of latent variables for generative modeling. In: NeurIPS (2019)"},{"key":"31_CR18","unstructured":"Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, J.I.: Adversarial autoencoders. CoRR (2015)"},{"key":"31_CR19","unstructured":"Metz, L., Poole, B., et al.: Unrolled generative adversarial networks. In: ICLR (2017)"},{"key":"31_CR20","unstructured":"Van den Oord, A., Kalchbrenner, N., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems, pp. 4790\u20134798 (2016)"},{"key":"31_CR21","unstructured":"Rezende, D.J., Mohamed, S., et al.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)"},{"key":"31_CR22","unstructured":"Salimans, T., Goodfellow, I., et al.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234\u20132242 (2016)"},{"key":"31_CR23","unstructured":"Salimans, T., Karpathy, A., Chen, X., Kingma, P.D.: PixelCNN++: improving the PixelCNN with discretized logistic mixture likelihood and other modifications. In: ICLR (2017)"},{"key":"31_CR24","unstructured":"Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. In: Advances in Neural Information Processing Systems, pp. 11895\u201311907 (2019)"},{"key":"31_CR25","doi-asserted-by":"crossref","unstructured":"Takahashi, H., Iwata, T., et al.: Variational autoencoder with implicit optimal priors. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5066\u20135073 (2019)","DOI":"10.1609\/aaai.v33i01.33015066"},{"key":"31_CR26","unstructured":"Tomczak, J., Welling, M.: VAE with a VampPrior. In: International Conference on Artificial Intelligence and Statistics, pp. 1214\u20131223 (2018)"},{"key":"31_CR27","unstructured":"Tomczak, J.M., Welling, M.: Improving variational auto-encoders using householder flow. arXiv preprint arXiv:1611.09630 (2016)"},{"key":"31_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"673","DOI":"10.1007\/978-3-030-01228-1_40","volume-title":"Computer Vision \u2013 ECCV 2018","author":"J Wu","year":"2018","unstructured":"Wu, J., Huang, Z., Thoma, J., Acharya, D., Van Gool, L.: Wasserstein divergence for GANs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 673\u2013688. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01228-1_40"},{"key":"31_CR29","unstructured":"Xiao, H., Rasul, K., et al.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:34:17Z","timestamp":1710250457000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_31","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}