{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:50:14Z","timestamp":1726105814072},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_30","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"353-365","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Unsupervised Multi-layer Spiking Convolutional Neural Network Using Layer-Wise Sparse Coding"],"prefix":"10.1007","author":[{"given":"Regina Esi","family":"Turkson","sequence":"first","affiliation":[]},{"given":"Hong","family":"Qu","sequence":"additional","affiliation":[]},{"given":"Yuchen","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Moses J.","family":"Eghan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"30_CR1","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1016\/j.neunet.2018.12.002","volume":"111","author":"A Tavanaei","year":"2018","unstructured":"Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.: Deep learning in spiking neural networks. Neural Netw. 111, 47\u201363 (2018)","journal-title":"Neural Netw."},{"issue":"7553","key":"30_CR2","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y Lecun","year":"2015","unstructured":"Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015)","journal-title":"Nature"},{"key":"30_CR3","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","volume":"61","author":"J Schmidhuber","year":"2015","unstructured":"Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85\u2013117 (2015)","journal-title":"Neural Netw."},{"key":"30_CR4","unstructured":"Krizhevsky, A., Sutskever, I., Hintom, G.E.: ImageNet classification with deep convolutional neural networks (2012)"},{"issue":"9","key":"30_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1162\/neco_a_00990","volume":"29","author":"W Rawat","year":"2017","unstructured":"Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 1\u201398 (2017)","journal-title":"Neural Comput."},{"key":"30_CR6","doi-asserted-by":"crossref","unstructured":"Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1717\u20131724. IEEE (2014)","DOI":"10.1109\/CVPR.2014.222"},{"key":"30_CR7","doi-asserted-by":"crossref","unstructured":"Abdel-Hamid, O., Deng, L., Yu, D.: Exploring convolutional neural network structures and optimization techniques for speech recognition. In: Proceedings Annual Conference of the International Speech Communication Association, INTERSPEECH, pp. 3366\u20133370, August 2013","DOI":"10.21437\/Interspeech.2013-744"},{"key":"30_CR8","doi-asserted-by":"crossref","unstructured":"Sainath, T.N., Mohamed, A.R., Kingsbury, B., Ramabhadran, B.: Deep convolutional neural networks for LVCSR. In: ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing - Proceedings, pp. 8614\u20138618 (2013)","DOI":"10.1109\/ICASSP.2013.6639347"},{"key":"30_CR9","doi-asserted-by":"crossref","unstructured":"Tavanaei, A., Maida, A.S., Kaniymattam, A., Loganantharaj, R.: Towards recognition of protein function based on its structure using deep convolutional networks. In: Proceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, pp. 145\u2013149 (2017)","DOI":"10.1109\/BIBM.2016.7822509"},{"issue":"12","key":"30_CR10","doi-asserted-by":"publisher","first-page":"i121","DOI":"10.1093\/bioinformatics\/btw255","volume":"32","author":"H Zeng","year":"2016","unstructured":"Zeng, H., Edwards, M.D., Liu, G., Gifford, D.K.: Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics 32(12), i121\u2013i127 (2016)","journal-title":"Bioinformatics"},{"key":"30_CR11","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Qiu, Z., Yao, T., Liu, D., Mei, T.: Fully convolutional adaptation networks for semantic segmentation. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 6810\u20136818 (2018)","DOI":"10.1109\/CVPR.2018.00712"},{"key":"30_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2014 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"30_CR13","doi-asserted-by":"publisher","first-page":"555","DOI":"10.1162\/NECO_a_00934","volume":"577","author":"Y Bengio","year":"2017","unstructured":"Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., Wu, Y.: STDP-compatible approximation of backpropagation in an energy-based model. Neural Comput. 577, 555\u2013577 (2017)","journal-title":"Neural Comput."},{"key":"30_CR14","unstructured":"O\u2019Connor, P., Welling, M.: Deep spiking networks. In: Proceedings of the 33rd International Conference on Machine Learning (2016)"},{"issue":"2","key":"30_CR15","doi-asserted-by":"publisher","first-page":"0247","DOI":"10.1371\/journal.pcbi.0030031","volume":"3","author":"T Masquelier","year":"2007","unstructured":"Masquelier, T., Thorpe, S.J.: Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput. Biol. 3(2), 0247\u20130257 (2007)","journal-title":"PLoS Comput. Biol."},{"key":"30_CR16","doi-asserted-by":"crossref","unstructured":"Kheradpisheh, S.R., Ganjtabesh, M., Masquelier, T.: Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition. Neurocomputing 205, 382\u2013392 (2016)","DOI":"10.1016\/j.neucom.2016.04.029"},{"key":"30_CR17","doi-asserted-by":"crossref","unstructured":"Tavanaei, A., Masquelier, T., Maida, A.S.: Acquisition of visual features through probabilistic spike-timing-dependent plasticity. In: Proceedings International Joint Conference on Neural Networks, pp. 307\u2013314 (2016)","DOI":"10.1109\/IJCNN.2016.7727213"},{"key":"30_CR18","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.neunet.2017.12.005","volume":"99","author":"SR Kheradpisheh","year":"2018","unstructured":"Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 99, 56\u201367 (2018)","journal-title":"Neural Netw."},{"key":"30_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3389\/fncom.2018.00046","volume":"12","author":"JC Thiele","year":"2018","unstructured":"Thiele, J.C., Bichler, O., Dupret, A.: Event-based, timescale invariant unsupervised online deep learning with STDP. Front. Comput. Neurosci. 12, 1\u201313 (2018)","journal-title":"Front. Comput. Neurosci."},{"key":"30_CR20","doi-asserted-by":"crossref","unstructured":"Tavanaei, A., Maida, A.: BP-STDP: approximating backpropagation using spike timing dependent plasticity. Neurocomputing 330, 39\u201347 (2019)","DOI":"10.1016\/j.neucom.2018.11.014"},{"key":"30_CR21","doi-asserted-by":"crossref","unstructured":"Tavanaei, A., Maida, A.S.: Multi-layer unsupervised learning in a spiking convolutional neural network. In: Proceedings International Joint Conference on Neural Networks, May 2017, pp. 2023\u20132030 (2017)","DOI":"10.1109\/IJCNN.2017.7966099"},{"key":"30_CR22","unstructured":"Tavanaei, A., Maida, A.S.: Bio-inspired spiking convolutional neural network using layer-wise sparse coding and STDP learning (2016)"},{"key":"30_CR23","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1007\/BF02331346","volume":"170","author":"P Foldiak","year":"1990","unstructured":"Foldiak, P.: Forming sparse representation by local anti-Hebbian learning. Biol. Cybern. 170, 165\u2013170 (1990)","journal-title":"Biol. Cybern."},{"key":"30_CR24","doi-asserted-by":"crossref","unstructured":"Zylberberg, J., Murphy, J.T., DeWeese, M.R.: A sparse coding model with Synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields. PLoS Comput. Biol. 7(10) (2011)","DOI":"10.1371\/journal.pcbi.1002250"},{"key":"30_CR25","doi-asserted-by":"publisher","first-page":"2010","DOI":"10.3389\/fnsyn.2012.00002","volume":"4","author":"H Markram","year":"2012","unstructured":"Markram, H., Gerstner, W., Sj\u00f6str\u00f6m, P.J.: Spike-timing-dependent plasticity: a comprehensive overview. Front. Synaptic Neurosci. 4, 2010\u20132012 (2012)","journal-title":"Front. Synaptic Neurosci."},{"issue":"2","key":"30_CR26","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11265-016-1153-2","volume":"90","author":"A Tavanaei","year":"2016","unstructured":"Tavanaei, A., Maida, A.S.: Training a hidden Markov model with a Bayesian spiking neural network. J. Sig. Process. Syst. 90(2), 211\u2013220 (2016). https:\/\/doi.org\/10.1007\/s11265-016-1153-2","journal-title":"J. Sig. Process. Syst."},{"key":"30_CR27","doi-asserted-by":"crossref","unstructured":"Tavanaei, A., Kirby, Z., Maida, A.S.: Training Spiking ConvNets by STDP and gradient descent. In: Proceedings International Joint Conference on Neural Networks, July 2018, pp. 1\u20138 (2018)","DOI":"10.1109\/IJCNN.2018.8489104"},{"key":"30_CR28","doi-asserted-by":"crossref","unstructured":"Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 1\u20139 (2015)","DOI":"10.3389\/fncom.2015.00099"},{"issue":"3","key":"30_CR29","doi-asserted-by":"crossref","first-page":"384","DOI":"10.1109\/TCDS.2018.2833071","volume":"11","author":"C Lee","year":"2018","unstructured":"Lee, C., Srinivasan, G., Panda, P., Roy, K.: Deep spiking convolutional neural network trained with unsupervised spike timing dependent plasticity. IEEE Trans. Cogn. Dev. Syst. 11(3), 384\u2013394 (2018)","journal-title":"IEEE Trans. Cogn. Dev. Syst."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_30","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,17]],"date-time":"2024-08-17T15:54:20Z","timestamp":1723910060000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_30"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_30","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}