{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:50:12Z","timestamp":1726105812000},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_26","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"306-317","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Oblique Random Forests on Residual Network Features"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3082-6746","authenticated-orcid":false,"given":"Wen Xin","family":"Cheng","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0901-5105","authenticated-orcid":false,"given":"P. N.","family":"Suganthan","sequence":"additional","affiliation":[]},{"given":"Rakesh","family":"Katuwal","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"issue":"3","key":"26_CR1","doi-asserted-by":"publisher","first-page":"606","DOI":"10.1007\/s10618-016-0483-9","volume":"31","author":"A Bagnall","year":"2016","unstructured":"Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606\u2013660 (2016). https:\/\/doi.org\/10.1007\/s10618-016-0483-9","journal-title":"Data Min. Knowl. Disc."},{"issue":"11","key":"26_CR2","doi-asserted-by":"publisher","first-page":"2796","DOI":"10.1109\/TPAMI.2013.72","volume":"35","author":"MG Baydogan","year":"2013","unstructured":"Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to classify time series. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2796\u20132802 (2013)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"26_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"24","DOI":"10.1007\/978-3-662-55608-5_2","volume-title":"Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXII","author":"A Bostrom","year":"2017","unstructured":"Bostrom, A., Bagnall, A.: Binary shapelet transform for multiclass time series classification. In: Hameurlain, A., K\u00fcng, J., Wagner, R., Madria, S., Hara, T. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXII. LNCS, vol. 10420, pp. 24\u201346. Springer, Heidelberg (2017). https:\/\/doi.org\/10.1007\/978-3-662-55608-5_2"},{"issue":"1","key":"26_CR4","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001)","journal-title":"Mach. Learn."},{"key":"26_CR5","unstructured":"Chen, Y., et al.: The UCR time series classification archive, July 2015. www.cs.ucr.edu\/~eamonn\/time_series_data\/"},{"key":"26_CR6","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1016\/j.ins.2013.02.030","volume":"239","author":"H Deng","year":"2013","unstructured":"Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and feature extraction. Inf. Sci. 239, 142\u2013153 (2013). https:\/\/doi.org\/10.1016\/j.ins.2013.02.030","journal-title":"Inf. Sci."},{"key":"26_CR7","unstructured":"Gamboa, J.C.B.: Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887 (2017)"},{"issue":"2","key":"26_CR8","doi-asserted-by":"publisher","first-page":"310","DOI":"10.1007\/s10618-012-0251-4","volume":"26","author":"T G\u00f3recki","year":"2013","unstructured":"G\u00f3recki, T., \u0141uczak, M.: Using derivatives in time series classification. Data Min. Knowl. Disc. 26(2), 310\u2013331 (2013)","journal-title":"Data Min. Knowl. Disc."},{"key":"26_CR9","doi-asserted-by":"publisher","unstructured":"Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 392\u2013401. Association for Computing Machinery, New York (2014). https:\/\/doi.org\/10.1145\/2623330.2623613","DOI":"10.1145\/2623330.2623613"},{"key":"26_CR10","doi-asserted-by":"publisher","unstructured":"G\u00e3recki, T., \u00c5uczak, M.: Non-isometric transforms in time series classification using DTW. Knowl. Based Syst. 61, 98\u2013108 (2014). https:\/\/doi.org\/10.1016\/j.knosys.2014.02.011","DOI":"10.1016\/j.knosys.2014.02.011"},{"key":"26_CR11","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770\u2013778, June 2016","DOI":"10.1109\/CVPR.2016.90"},{"issue":"4","key":"26_CR12","doi-asserted-by":"publisher","first-page":"851","DOI":"10.1007\/s10618-013-0322-1","volume":"28","author":"J Hills","year":"2013","unstructured":"Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851\u2013881 (2013). https:\/\/doi.org\/10.1007\/s10618-013-0322-1","journal-title":"Data Min. Knowl. Disc."},{"key":"26_CR13","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)"},{"key":"26_CR14","doi-asserted-by":"publisher","first-page":"1662","DOI":"10.1109\/ACCESS.2017.2779939","volume":"6","author":"F Karim","year":"2018","unstructured":"Karim, F., Majumdar, S., Darabi, H., Chen, S.: Lstm fully convolutional networks for time series classification. IEEE Access 6, 1662\u20131669 (2018)","journal-title":"IEEE Access"},{"key":"26_CR15","doi-asserted-by":"crossref","unstructured":"Katuwal, R., Suganthan, P.N.: Enhancing multi-class classification of random forest using random vector functional neural network and oblique decision surfaces. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138 (2018)","DOI":"10.1109\/IJCNN.2018.8489738"},{"key":"26_CR16","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"26_CR17","unstructured":"Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)"},{"issue":"3","key":"26_CR18","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1007\/s10618-014-0361-2","volume":"29","author":"J Lines","year":"2014","unstructured":"Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Disc. 29(3), 565\u2013592 (2014). https:\/\/doi.org\/10.1007\/s10618-014-0361-2","journal-title":"Data Min. Knowl. Disc."},{"key":"26_CR19","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431\u20133440, June 2015","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"26_CR20","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1016\/j.neunet.2019.05.008","volume":"117","author":"Q Ma","year":"2019","unstructured":"Ma, Q., Zhuang, W., Shen, L., Cottrell, G.W.: Time series classification with echo memory networks. Neural Networks 117, 225\u2013239 (2019). https:\/\/doi.org\/10.1016\/j.neunet.2019.05.008","journal-title":"Neural Networks"},{"key":"26_CR21","unstructured":"Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807\u2013814 (2010)"},{"key":"26_CR22","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1016\/j.eswa.2018.03.056","volume":"105","author":"HF Nweke","year":"2018","unstructured":"Nweke, H.F., Teh, Y.W., Al-garadi, M.A., Alo, U.R.: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst. Appl. 105, 233\u2013261 (2018). https:\/\/doi.org\/10.1016\/j.eswa.2018.03.056","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"26_CR23","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1038\/s41746-018-0029-1","volume":"1","author":"A Rajkomar","year":"2018","unstructured":"Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health records. NPJ. Digital Med. 1(1), 18 (2018)","journal-title":"NPJ. Digital Med."},{"issue":"6","key":"26_CR24","doi-asserted-by":"publisher","first-page":"1505","DOI":"10.1007\/s10618-014-0377-7","volume":"29","author":"P Sch\u00e4fer","year":"2015","unstructured":"Sch\u00e4fer, P.: The boss is concerned with time series classification in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505\u20131530 (2015)","journal-title":"Data Min. Knowl. Disc."},{"key":"26_CR25","doi-asserted-by":"publisher","unstructured":"Susto, G.A., Cenedese, A., Terzi, M.: Chapter 9 - time-series classification methods: Review and applications to power systems data. In: Arghandeh, R., Zhou, Y. (eds.) Big Data Application in Power Systems, pp. 179\u2013220. Elsevier (2018). https:\/\/doi.org\/10.1016\/B978-0-12-811968-6.00009-7","DOI":"10.1016\/B978-0-12-811968-6.00009-7"},{"issue":"8","key":"26_CR26","doi-asserted-by":"publisher","first-page":"832","DOI":"10.1109\/34.709601","volume":"20","author":"TK Ho","year":"1998","unstructured":"Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832\u2013844 (1998)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"26_CR27","doi-asserted-by":"publisher","unstructured":"Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3\u201311 (2019). https:\/\/doi.org\/10.1016\/j.patrec.2018.02.010, deep Learning for Pattern Recognition","DOI":"10.1016\/j.patrec.2018.02.010"},{"key":"26_CR28","doi-asserted-by":"publisher","unstructured":"Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578\u20131585, May 2017. https:\/\/doi.org\/10.1109\/IJCNN.2017.7966039","DOI":"10.1109\/IJCNN.2017.7966039"},{"key":"26_CR29","doi-asserted-by":"publisher","unstructured":"YANG, Q., WU, X.: 10 challenging problems in data mining research. Int. J. Inf. Technol. Decis. Making 05(04), 597\u2013604 (2006). https:\/\/doi.org\/10.1142\/S0219622006002258","DOI":"10.1142\/S0219622006002258"},{"issue":"10","key":"26_CR30","doi-asserted-by":"publisher","first-page":"2165","DOI":"10.1109\/TCYB.2014.2366468","volume":"45","author":"L Zhang","year":"2015","unstructured":"Zhang, L., Suganthan, P.N.: Oblique decision tree ensemble via multisurface proximal support vector machine. IEEE Trans. Cybern. 45(10), 2165\u20132176 (2015)","journal-title":"IEEE Trans. Cybern."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:31:55Z","timestamp":1710250315000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_26","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}