{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:50:09Z","timestamp":1726105809465},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_25","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"294-305","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Non-linear ICA Based on Cramer-Wold Metric"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0097-5521","authenticated-orcid":false,"given":"Przemys\u0142aw","family":"Spurek","sequence":"first","affiliation":[]},{"given":"Aleksandra","family":"Nowak","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6652-7727","authenticated-orcid":false,"given":"Jacek","family":"Tabor","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6947-8131","authenticated-orcid":false,"given":"\u0141ukasz","family":"Maziarka","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4138-1818","authenticated-orcid":false,"given":"Stanis\u0142aw","family":"Jastrz\u0119bski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"issue":"Dec","key":"25_CR1","first-page":"1297","volume":"4","author":"LB Almeida","year":"2003","unstructured":"Almeida, L.B.: MISEP-linear and nonlinear ICA based on mutual information. J. Mach. Learn. Res. 4(Dec), 1297\u20131318 (2003)","journal-title":"J. Mach. Learn. Res."},{"issue":"2","key":"25_CR2","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1016\/j.sigpro.2003.10.008","volume":"84","author":"LB Almeida","year":"2004","unstructured":"Almeida, L.B.: Linear and nonlinear ICA based on mutual information - the MISEP method. Signal Process. 84(2), 231\u2013245 (2004)","journal-title":"Signal Process."},{"issue":"6","key":"25_CR3","doi-asserted-by":"publisher","first-page":"1129","DOI":"10.1162\/neco.1995.7.6.1129","volume":"7","author":"AJ Bell","year":"1995","unstructured":"Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129\u20131159 (1995)","journal-title":"Neural Comput."},{"key":"25_CR4","unstructured":"Brakel, P., Bengio, Y.: Learning independent features with adversarial nets for non-linear ica. arXiv preprint arXiv:1710.05050 (2017)"},{"key":"25_CR5","unstructured":"Burgess, C.P., et al.: Understanding disentangling in $$\\beta $$-vae. CoRR abs\/1804.03599 (2018)"},{"key":"25_CR6","doi-asserted-by":"crossref","unstructured":"Cardoso, J.F., Souloumiac, A.: Blind beamforming for non-gaussian signals. In: Radar and Signal Processing, IEE Proceedings F, vol. 140, pp. 362\u2013370. IET (1993)","DOI":"10.1049\/ip-f-2.1993.0054"},{"key":"25_CR7","unstructured":"Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 2172\u20132180. Curran Associates, Inc. (2016)"},{"key":"25_CR8","unstructured":"Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components estimation. arXiv preprint arXiv:1410.8516 (2014)"},{"key":"25_CR9","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672\u20132680 (2014)"},{"key":"25_CR10","unstructured":"Helwig, N.E.: ICA: Independent Component Analysis (2015). http:\/\/CRAN.R-project.org\/package=ica, r package version 1.0-1"},{"key":"25_CR11","unstructured":"Hirayama, J., Hyv\u00e4rinen, A., Kawanabe, M.: SPLICE: fully tractable hierarchical extension of ICA with pooling. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1491\u20131500. PMLR, International Convention Centre, Sydney (2017)"},{"issue":"3","key":"25_CR12","doi-asserted-by":"publisher","first-page":"626","DOI":"10.1109\/72.761722","volume":"10","author":"A Hyv\u00e4rinen","year":"1999","unstructured":"Hyv\u00e4rinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626\u2013634 (1999)","journal-title":"IEEE Trans. Neural Netw."},{"key":"25_CR13","unstructured":"Hyvarinen, A., Morioka, H.: Unsupervised feature extraction by time-contrastive learning and nonlinear ica. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 3765\u20133773. Curran Associates, Inc. (2016)"},{"issue":"3","key":"25_CR14","doi-asserted-by":"publisher","first-page":"429","DOI":"10.1016\/S0893-6080(98)00140-3","volume":"12","author":"A Hyv\u00e4rinen","year":"1999","unstructured":"Hyv\u00e4rinen, A., Pajunen, P.: Nonlinear independent component analysis: existence and uniqueness results. Neural Netw. 12(3), 429\u2013439 (1999)","journal-title":"Neural Netw."},{"key":"25_CR15","unstructured":"Karvanen, J.: PearsonICA (2008). https:\/\/CRAN.R-project.org\/package=PearsonICA, r package version 1.2-3"},{"key":"25_CR16","unstructured":"Karvanen, J., Eriksson, J., Koivunen, V.: Pearson system based method for blind separation. In: Proceedings of Second International Workshop on Independent Component Analysis and Blind Signal Separation (ICA2000), Helsinki, Finland, pp. 585\u2013590 (2000)"},{"key":"25_CR17","unstructured":"Kim, H., Mnih, A.: Disentangling by Factorising. ArXiv e-prints (2018)"},{"key":"25_CR18","unstructured":"Kingma, D., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2014)"},{"key":"25_CR19","unstructured":"Le, Q.V., Karpenko, A., Ngiam, J., Ng, A.Y.: ICA with reconstruction cost for efficient overcomplete feature learning. In: Advances in Neural Information Processing Systems, pp. 1017\u20131025 (2011)"},{"key":"25_CR20","unstructured":"Lee, T.W., Koehler, B.U., Orglmeister, R.: Blind source separation of nonlinear mixing models. In: Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop, pp. 406\u2013415. IEEE (1997)"},{"key":"25_CR21","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1080\/01621459.2016.1150851","volume":"112","author":"DS Matteson","year":"2017","unstructured":"Matteson, D.S., Tsay, R.S.: Independent component analysis via distance covariance. J. Am. Stat. Assoc. 112, 1\u201316 (2017)","journal-title":"J. Am. Stat. Assoc."},{"key":"25_CR22","doi-asserted-by":"publisher","first-page":"230","DOI":"10.1016\/j.patcog.2017.02.019","volume":"67","author":"P Spurek","year":"2017","unstructured":"Spurek, P., Tabor, J., Rola, P., Ociepka, M.: ICA based on asymmetry. Pattern Recogn. 67, 230\u2013244 (2017)","journal-title":"Pattern Recogn."},{"key":"25_CR23","doi-asserted-by":"crossref","unstructured":"Stuart, A., Kendall, M.G., et al.: The advanced theory of statistics. Charles Griffin (1968)","DOI":"10.2307\/2986781"},{"issue":"6","key":"25_CR24","doi-asserted-by":"publisher","first-page":"2769","DOI":"10.1214\/009053607000000505","volume":"35","author":"GJ Sz\u00e9kely","year":"2007","unstructured":"Sz\u00e9kely, G.J., Rizzo, M.L., Bakirov, N.K., et al.: Measuring and testing dependence by correlation of distances. Ann. stat. 35(6), 2769\u20132794 (2007)","journal-title":"Ann. stat."},{"key":"25_CR25","unstructured":"Tabor, J., Knop, S., Spurek, P., Podolak, I., Mazur, M., Jastrzebski, S.: Cramer-wold autoencoder. arXiv preprint arXiv:1805.09235 (2018)"},{"issue":"1","key":"25_CR26","doi-asserted-by":"publisher","first-page":"124","DOI":"10.1109\/72.896801","volume":"12","author":"Y Tan","year":"2001","unstructured":"Tan, Y., Wang, J., Zurada, J.M.: Nonlinear blind source separation using a radial basis function network. IEEE Trans. Neural Netw. 12(1), 124\u2013134 (2001)","journal-title":"IEEE Trans. Neural Netw."},{"key":"25_CR27","unstructured":"Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. arXiv:1711.01558 (2017)"},{"issue":"Nov","key":"25_CR28","first-page":"2455","volume":"9","author":"K Zhang","year":"2008","unstructured":"Zhang, K., Chan, L.: Minimal nonlinear distortion principle for nonlinear independent component analysis. J. Mach. Learn. Res. 9(Nov), 2455\u20132487 (2008)","journal-title":"J. Mach. Learn. Res."},{"key":"25_CR29","doi-asserted-by":"publisher","first-page":"2557","DOI":"10.1162\/neco.2007.19.9.2557","volume":"19","author":"CH Zheng","year":"2007","unstructured":"Zheng, C.H., Huang, D.S., Li, K., Irwin, G., Sun, Z.L.: MISEP method for postnonlinear blind source separation. Neural Comput. 19, 2557\u20132578 (2007)","journal-title":"Neural Comput."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:31:48Z","timestamp":1710250308000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}