{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T16:42:26Z","timestamp":1726245746025},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_20","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T04:12:07Z","timestamp":1605672727000},"page":"232-244","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Environmentally-Friendly Metrics for Evaluating the Performance of Deep Learning Models and Systems"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2689-6015","authenticated-orcid":false,"given":"Sorin Liviu","family":"Jurj","sequence":"first","affiliation":[]},{"given":"Flavius","family":"Opritoiu","sequence":"additional","affiliation":[]},{"given":"Mircea","family":"Vladutiu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"20_CR1","unstructured":"Mattson, P., et al.: MLPerf Training Benchmark. arXiv:191001500 (2019)"},{"key":"20_CR2","unstructured":"Reddi, V.J., et al.: MLPerf Inference Benchmark. arXiv:191102549 (2019)"},{"key":"20_CR3","unstructured":"Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. arXiv:1907.10597v3 (2019)"},{"key":"20_CR4","doi-asserted-by":"crossref","unstructured":"Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. arXiv:1906.02243 (2019)","DOI":"10.18653\/v1\/P19-1355"},{"key":"20_CR5","doi-asserted-by":"crossref","unstructured":"Ben-Nun, T., et al.: A modular benchmarking infrastructure for high-performance and reproducible deep learning. arXiv:190110183 (2019)","DOI":"10.1109\/IPDPS.2019.00018"},{"key":"20_CR6","doi-asserted-by":"crossref","unstructured":"Zhu, H., et al.: TBD: benchmarking and analyzing deep neural network training. arXiv:180306905 (2018)","DOI":"10.1109\/IISWC.2018.8573476"},{"key":"20_CR7","series-title":"Proceedings of the International Neural Networks Society","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1007\/978-3-030-48791-1_7","volume-title":"Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference","author":"SL Jurj","year":"2020","unstructured":"Jurj, S.L., Rotar, R., Opritoiu, F., Vladutiu, M.: Efficient implementation of a self-sufficient solar-powered real-time deep learning-based system. In: Iliadis, L., Angelov, P.P., Jayne, C., Pimenidis, E. (eds.) EANN 2020. PINNS, vol. 2, pp. 99\u2013118. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-48791-1_7"},{"key":"20_CR8","unstructured":"Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. arXiv:160507678 (2017)"},{"key":"20_CR9","doi-asserted-by":"publisher","first-page":"64270","DOI":"10.1109\/ACCESS.2018.2877890","volume":"6","author":"S Bianco","year":"2018","unstructured":"Bianco, S., Cadene, R., Celona, L., Napoletano, P.: Benchmark analysis of representative deep neural network architectures. IEEE Access 6, 64270\u201364277 (2018). https:\/\/doi.org\/10.1109\/ACCESS.2018.2877890","journal-title":"IEEE Access"},{"key":"20_CR10","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.jpdc.2019.07.007","volume":"134","author":"E Garc\u00eda-Mart\u00edn","year":"2019","unstructured":"Garc\u00eda-Mart\u00edn, E., et al.: Estimation of energy consumption in machine learning. J. Parallel Distrib. Comput. 134, 75\u201388 (2019). https:\/\/doi.org\/10.1016\/j.jpdc.2019.07.007","journal-title":"J. Parallel Distrib. Comput."},{"key":"20_CR11","unstructured":"Verma, S., et al.: Metrics for machine learning workload benchmarking. In: International Workshop on Performance Analysis of Machine Learning Systems (FastPath) in Conjunction with ISPASS, Texas, The University of Texas (2019)"},{"key":"20_CR12","unstructured":"Strom-Report. https:\/\/1-stromvergleich.com\/electricity-prices-europe\/. Accessed 25 Apr 2020"},{"key":"20_CR13","doi-asserted-by":"publisher","unstructured":"Jurj, S.L., Opritoiu, F., Vladutiu, M.: Real-time identification of animals found in domestic areas of Europe. In: Proceedings of SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019), p. 1143313 (2020). https:\/\/doi.org\/10.1117\/12.2556376","DOI":"10.1117\/12.2556376"},{"key":"20_CR14","unstructured":"Convenient Power Measurement Script on the Jetson TX2\/Tegra X2. https:\/\/embeddeddl.wordpress.com\/2018\/04\/25\/convenient-power-measurements-on-the-jetson-tx2-tegra-x2-board\/. Accessed 03 May 2020"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T09:30:45Z","timestamp":1710235845000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_20","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}