{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:50:02Z","timestamp":1726105802567},"publisher-location":"Cham","reference-count":35,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_19","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"220-231","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Estimating Conditional Density of Missing Values Using Deep Gaussian Mixture Model"],"prefix":"10.1007","author":[{"given":"Marcin","family":"Przewi\u0119\u017alikowski","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2027-4132","authenticated-orcid":false,"given":"Marek","family":"\u015amieja","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4006-356X","authenticated-orcid":false,"given":"\u0141ukasz","family":"Struski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"19_CR1","unstructured":"Bishop, C.M.: Mixture density networks (1994)"},{"key":"19_CR2","unstructured":"Delalleau, O., Courville, A., Bengio, Y.: Efficient em training of gaussian mixtures with missing data. arXiv preprint arXiv:1209.0521 (2012)"},{"key":"19_CR3","doi-asserted-by":"crossref","unstructured":"Dick, U., Haider, P., Scheffer, T.: Learning from incomplete data with infinite imputations. In: Proceedings of the 25th International Conference on Machine Learning, pp. 232\u2013239 (2008)","DOI":"10.1145\/1390156.1390186"},{"key":"19_CR4","unstructured":"Ghahramani, Z., Hinton, G.E., et al.: The em algorithm for mixtures of factor analyzers. Technical report, Technical Report CRG-TR-96-1, University of Toronto (1996)"},{"key":"19_CR5","doi-asserted-by":"crossref","unstructured":"Ghahramani, Z., Jordan, M.I.: Supervised learning from incomplete data via an em approach. In: Advances in Neural Information Processing Systems, pp. 120\u2013127 (1994)","DOI":"10.21236\/ADA295618"},{"key":"19_CR6","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672\u20132680 (2014)"},{"key":"19_CR7","volume-title":"Deep Learning","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)"},{"issue":"4","key":"19_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3072959.3073659","volume":"36","author":"S Iizuka","year":"2017","unstructured":"Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1\u201314 (2017)","journal-title":"ACM Trans. Graph. (ToG)"},{"issue":"2","key":"19_CR9","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/j.artmed.2010.05.002","volume":"50","author":"JM Jerez","year":"2010","unstructured":"Jerez, J.M., et al.: Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med. 50(2), 105\u2013115 (2010)","journal-title":"Artif. Intell. Med."},{"key":"19_CR10","unstructured":"Kingma, D., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (2014)"},{"key":"19_CR11","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278\u20132324 (1998)","journal-title":"Proc. IEEE"},{"key":"19_CR12","unstructured":"Li, S.C.X., Jiang, B., Marlin, B.: Misgan: learning from incomplete data with generative adversarial networks. arXiv preprint arXiv:1902.09599 (2019)"},{"key":"19_CR13","unstructured":"Li, Y., Akbar, S., Oliva, J.B.: Flow models for arbitrary conditional likelihoods. arXiv preprint arXiv:1909.06319 (2019)"},{"key":"19_CR14","doi-asserted-by":"crossref","unstructured":"Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: International Conference on Computer Vision (2015)","DOI":"10.1109\/ICCV.2015.425"},{"key":"19_CR15","unstructured":"Mattei, P.A., Frellsen, J.: Leveraging the exact likelihood of deep latent variable models. In: Advances in Neural Information Processing Systems. pp. 3855\u20133866 (2018)"},{"key":"19_CR16","unstructured":"Mattei, P.A., Frellsen, J.: Miwae: deep generative modelling and imputation of incomplete data sets. In: International Conference on Machine Learning, pp. 4413\u20134423 (2019)"},{"key":"19_CR17","volume-title":"Finite Mixture Models","author":"GJ McLachlan","year":"2004","unstructured":"McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley & Sons, Hoboken (2004)"},{"key":"19_CR18","doi-asserted-by":"crossref","unstructured":"Nazabal, A., Olmos, P.M., Ghahramani, Z., Valera, I.: Handling incomplete heterogeneous data using vaes. Pattern Recogn., 107501 (2020)","DOI":"10.1016\/j.patcog.2020.107501"},{"key":"19_CR19","unstructured":"Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with pixelcnn decoders. In: Advances in Neural Information Processing Systems, pp. 4790\u20134798 (2016)"},{"key":"19_CR20","doi-asserted-by":"crossref","unstructured":"Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders: feature learning by inpainting. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536\u20132544 (2016)","DOI":"10.1109\/CVPR.2016.278"},{"key":"19_CR21","doi-asserted-by":"crossref","unstructured":"Przewi\u0119\u017alikowski, M., \u015amieja, M., Struski, \u0141.: Estimating conditional density of missing values using deep gaussian mixture model. In: ICML Workshop on the Art of Learning with Missing Values (Artemiss), p. 7 (2020)","DOI":"10.1007\/978-3-030-63836-8_19"},{"key":"19_CR22","unstructured":"Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)"},{"key":"19_CR23","unstructured":"Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082 (2014)"},{"key":"19_CR24","unstructured":"Richardson, E., Weiss, Y.: On GANs and GMMs. In: Advances in Neural Information Processing Systems, pp. 5847\u20135858 (2018)"},{"key":"19_CR25","unstructured":"\u015amieja, M., Ko\u0142omycki, M., Struski, L., Juda, M., Figueiredo, M.A.T.: Can auto-encoders help with filling missing data? In: ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations, p. 6 (2020)"},{"key":"19_CR26","doi-asserted-by":"crossref","unstructured":"\u015amieja, M., Ko\u0142omycki, M., Struski, L., Juda, M., Figueiredo, M.A.T.: Iterative imputation of missing data using auto-encoder dynamics. In: International Conference on Neural Information Processing, p. 12. Springer, Cham (2020)","DOI":"10.1007\/978-3-030-63836-8_22"},{"key":"19_CR27","doi-asserted-by":"publisher","first-page":"150","DOI":"10.1016\/j.knosys.2019.02.034","volume":"173","author":"M \u015amieja","year":"2019","unstructured":"\u015amieja, M., Struski, \u0141., Tabor, J., Marzec, M.: Generalized RBF kernel for incomplete data. Knowl.-Based Syst. 173, 150\u2013162 (2019)","journal-title":"Knowl.-Based Syst."},{"key":"19_CR28","unstructured":"\u015amieja, M., Struski, \u0141., Tabor, J., Zieli\u0144ski, B., Spurek, P.: Processing of missing data by neural networks. In: Advances in Neural Information Processing Systems, pp. 2719\u20132729 (2018)"},{"issue":"3","key":"19_CR29","doi-asserted-by":"publisher","first-page":"611","DOI":"10.1111\/1467-9868.00196","volume":"61","author":"ME Tipping","year":"1999","unstructured":"Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 61(3), 611\u2013622 (1999)","journal-title":"J. Roy. Stat. Soc. Ser. B (Stat. Methodol.)"},{"key":"19_CR30","unstructured":"Tolstikhin, I., Bousquet, O., Gelly, S., Sch\u00f6lkopf, B.: Wasserstein auto-encoders (2017). arXiv:1711.01558"},{"key":"19_CR31","unstructured":"Trippe, B.L., Turner, R.E.: Conditional density estimation with bayesian normalising flows. arXiv preprint arXiv:1802.04908 (2018)"},{"key":"19_CR32","doi-asserted-by":"publisher","DOI":"10.1201\/9780429492259","volume-title":"Flexible Imputation of Missing Data","author":"S Van Buuren","year":"2018","unstructured":"Van Buuren, S.: Flexible Imputation of Missing Data. CRC Press, Boca Raton (2018)"},{"key":"19_CR33","unstructured":"Williams, D., Carin, L.: Analytical kernel matrix completion with incomplete multi-view data. In: Proceedings of the International Conference on Machine Learning (ICML) Workshop on Learning with Multiple Views, pp. 80\u201386 (2005)"},{"key":"19_CR34","unstructured":"Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)"},{"key":"19_CR35","doi-asserted-by":"crossref","unstructured":"Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505\u20135514 (2018)","DOI":"10.1109\/CVPR.2018.00577"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:30:41Z","timestamp":1710250241000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}