{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:50:02Z","timestamp":1726105802855},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_18","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T04:12:07Z","timestamp":1605672727000},"page":"208-219","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Brain-Inspired Framework for Image Classification with a New Unsupervised Matching Pursuit Encoding"],"prefix":"10.1007","author":[{"given":"Shiming","family":"Song","sequence":"first","affiliation":[]},{"given":"Chenxiang","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Qiang","family":"Yu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"issue":"2","key":"18_CR1","doi-asserted-by":"publisher","first-page":"47","DOI":"10.2478\/v10136-012-0031-x","volume":"11","author":"F Amato","year":"2013","unstructured":"Amato, F., L\u00f3pez, A., Pe\u00f1a-M\u00e9ndez, E.M., Va\u0148hara, P., Hampl, A., Havel, J.: Artificial neural networks in medical diagnosis. J. Appl. Biomed. 11(2), 47\u201358 (2013). https:\/\/doi.org\/10.2478\/v10136-012-0031-x. ISSN 1214-021X","journal-title":"J. Appl. Biomed."},{"key":"18_CR2","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1016\/j.neunet.2013.07.012","volume":"48","author":"M Beyeler","year":"2013","unstructured":"Beyeler, M., Dutt, N.D., Krichmar, J.L.: Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw. 48, 109\u2013124 (2013)","journal-title":"Neural Netw."},{"issue":"1","key":"18_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s00422-006-0068-6","volume":"95","author":"AN Burkitt","year":"2006","unstructured":"Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95(1), 1\u201319 (2006)","journal-title":"Biol. Cybern."},{"key":"18_CR4","doi-asserted-by":"crossref","unstructured":"Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: learning affordance for direct perception in autonomous driving. In: 2015 IEEE International Conference on Computer Vision, Chile, pp. 2722\u20132730. IEEE (2015)","DOI":"10.1109\/ICCV.2015.312"},{"key":"18_CR5","doi-asserted-by":"publisher","first-page":"99","DOI":"10.3389\/fncom.2015.00099","volume":"9","author":"PU Diehl","year":"2015","unstructured":"Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)","journal-title":"Front. Comput. Neurosci."},{"issue":"6277","key":"18_CR6","doi-asserted-by":"publisher","first-page":"aab4113","DOI":"10.1126\/science.aab4113","volume":"351","author":"R G\u00fctig","year":"2016","unstructured":"G\u00fctig, R.: Spiking neurons can discover predictive features by aggregate-label learning. Science 351(6277), aab4113 (2016)","journal-title":"Science"},{"issue":"3","key":"18_CR7","doi-asserted-by":"publisher","first-page":"420","DOI":"10.1038\/nn1643","volume":"9","author":"R G\u00fctig","year":"2006","unstructured":"G\u00fctig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9(3), 420\u2013428 (2006)","journal-title":"Nat. Neurosci."},{"issue":"6535","key":"18_CR8","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1038\/376033a0","volume":"376","author":"JJ Hopfield","year":"1995","unstructured":"Hopfield, J.J.: Pattern recognition computation using action potential timing for stimulus representation. Nature 376(6535), 33\u201336 (1995)","journal-title":"Nature"},{"issue":"2","key":"18_CR9","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1109\/MCI.2016.2532268","volume":"11","author":"J Hu","year":"2016","unstructured":"Hu, J., Tang, H., Tan, K.C., Li, H.: How the brain formulates memory: a spatio-temporal model research frontier. IEEE Comput. Intell. Mag. 11(2), 56\u201368 (2016)","journal-title":"IEEE Comput. Intell. Mag."},{"key":"18_CR10","doi-asserted-by":"crossref","unstructured":"Hussain, S., Liu, S.C., Basu, A.: Improved margin multi-class classification using dendritic neurons with morphological learning. In: 20th IEEE International Symposium on Circuits and Systems (ISCAS), Australia, pp. 2640\u20132643. IEEE (2014)","DOI":"10.1109\/ISCAS.2014.6865715"},{"issue":"7553","key":"18_CR11","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015)","journal-title":"Nature"},{"key":"18_CR12","first-page":"508","volume":"10","author":"JH Lee","year":"2016","unstructured":"Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508 (2016)","journal-title":"Front. Neurosci."},{"key":"18_CR13","doi-asserted-by":"crossref","unstructured":"Merolla, P., Arthur, J., Akopyan, F., Imam, N., Manohar, R., Modha, D.S.: A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm. In: 2011 IEEE Custom Integrated Circuits Conference (CICC), USA, pp. 1\u20134. IEEE (2011)","DOI":"10.1109\/CICC.2011.6055294"},{"key":"18_CR14","unstructured":"Perrinet, L., Samuelides, M.: Sparse image coding using an asynchronous spiking neural network. In: 10th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Belgium, pp. 313\u2013318 (2002)"},{"issue":"5","key":"18_CR15","doi-asserted-by":"publisher","first-page":"1164","DOI":"10.1109\/TNN.2004.833303","volume":"15","author":"L Perrinet","year":"2004","unstructured":"Perrinet, L., Samuelides, M., Thorpe, S.: Coding static natural images using spiking event times: do neurons cooperate? IEEE Trans. Neural Networks 15(5), 1164\u20131175 (2004)","journal-title":"IEEE Trans. Neural Networks"},{"issue":"11","key":"18_CR16","doi-asserted-by":"publisher","first-page":"1019","DOI":"10.1038\/14819","volume":"2","author":"M Riesenhuber","year":"1999","unstructured":"Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019\u20131025 (1999)","journal-title":"Nat. Neurosci."},{"issue":"7784","key":"18_CR17","doi-asserted-by":"publisher","first-page":"607","DOI":"10.1038\/s41586-019-1677-2","volume":"575","author":"K Roy","year":"2019","unstructured":"Roy, K., Jaiswal, A., Panda, P.: Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784), 607\u2013617 (2019)","journal-title":"Nature"},{"issue":"6","key":"18_CR18","doi-asserted-by":"publisher","first-page":"1255","DOI":"10.1162\/08997660152002852","volume":"13","author":"RV Rullen","year":"2001","unstructured":"Rullen, R.V., Thorpe, S.J.: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13(6), 1255\u20131283 (2001)","journal-title":"Neural Comput."},{"issue":"15","key":"18_CR19","doi-asserted-by":"publisher","first-page":"6424","DOI":"10.1073\/pnas.0700622104","volume":"104","author":"T Serre","year":"2007","unstructured":"Serre, T., Oliva, A., Poggio, T.: A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. 104(15), 6424\u20136429 (2007)","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"3","key":"18_CR20","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1109\/TPAMI.2007.56","volume":"29","author":"T Serre","year":"2007","unstructured":"Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411\u2013426 (2007)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"18_CR21","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)"},{"key":"18_CR22","doi-asserted-by":"publisher","first-page":"331","DOI":"10.3389\/fnins.2018.00331","volume":"12","author":"Y Wu","year":"2018","unstructured":"Wu, Y., Deng, L., Li, G., Zhu, J., Shi, L.: Spatio-temporal backpropagation for training high-performance spiking neural networks. Front. Neurosci. 12, 331 (2018)","journal-title":"Front. Neurosci."},{"key":"18_CR23","doi-asserted-by":"crossref","unstructured":"Xu, Q., Qi, Y., Yu, H., Shen, J., Tang, H., Pan, G.: CSNN: an augmented spiking based framework with perceptron-inception. In: 27th International Joint Conferences on Artificial Intelligence (IJCAI), Sweden, pp. 1646\u20131652 (2018)","DOI":"10.24963\/ijcai.2018\/228"},{"issue":"6","key":"18_CR24","doi-asserted-by":"publisher","first-page":"2178","DOI":"10.1109\/TCYB.2018.2821692","volume":"49","author":"Q Yu","year":"2018","unstructured":"Yu, Q., Li, H., Tan, K.C.: Spike timing or rate? Neurons learn to make decisions for both through threshold-driven plasticity. IEEE Trans. Cybern. 49(6), 2178\u20132189 (2018)","journal-title":"IEEE Trans. Cybern."},{"issue":"11","key":"18_CR25","doi-asserted-by":"publisher","first-page":"e78318","DOI":"10.1371\/journal.pone.0078318","volume":"8","author":"Q Yu","year":"2013","unstructured":"Yu, Q., Tang, H., Tan, K.C., Li, H.: Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns. PLoS ONE 8(11), e78318 (2013)","journal-title":"PLoS ONE"},{"issue":"10","key":"18_CR26","doi-asserted-by":"publisher","first-page":"1539","DOI":"10.1109\/TNNLS.2013.2245677","volume":"24","author":"Q Yu","year":"2013","unstructured":"Yu, Q., Tang, H., Tan, K.C., Li, H.: Rapid feedforward computation by temporal encoding and learning with spiking neurons. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1539\u20131552 (2013)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_18","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T09:30:26Z","timestamp":1710235826000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_18"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_18","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}