{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:50:05Z","timestamp":1726105805125},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_16","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"185-196","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Automatic Dropout for Deep Neural Networks"],"prefix":"10.1007","author":[{"given":"Veena","family":"Dodballapur","sequence":"first","affiliation":[]},{"given":"Rajanish","family":"Calisa","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Song","sequence":"additional","affiliation":[]},{"given":"Weidong","family":"Cai","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"16_CR1","unstructured":"Ba, J., Frey, B.: Adaptive dropout for training deep neural networks. In: Advances in Neural Information Processing Systems, pp. 3084\u20133092 (2013)"},{"key":"16_CR2","unstructured":"Gomez, A.N., Zhang, I., Swersky, K., Gal, Y., Hinton, G.E.: Targeted dropout (2018)"},{"key":"16_CR3","unstructured":"Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)"},{"key":"16_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"646","DOI":"10.1007\/978-3-319-46493-0_39","volume-title":"Computer Vision \u2013 ECCV 2016","author":"G Huang","year":"2016","unstructured":"Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646\u2013661. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46493-0_39"},{"key":"16_CR5","doi-asserted-by":"crossref","unstructured":"Keshari, R., Singh, R., Vatsa, M.: Guided dropout. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4065\u20134072 (2019)","DOI":"10.1609\/aaai.v33i01.33014065"},{"key":"16_CR6","unstructured":"Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick. In: Advances in Neural Information Processing Systems, pp. 2575\u20132583 (2015)"},{"key":"16_CR7","unstructured":"Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 and CIFAR-100 datasets. https:\/\/www.cs.toronto.edu\/kriz\/cifar.html (2009)"},{"key":"16_CR8","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)"},{"key":"16_CR9","unstructured":"Labach, A., Salehinejad, H., Valaee, S.: Survey of dropout methods for deep neural networks. arXiv preprint arXiv:1904.13310 (2019)"},{"key":"16_CR10","unstructured":"Mianjy, P., Arora, R., Vidal, R.: On the implicit bias of dropout. arXiv preprint arXiv:1806.09777 (2018)"},{"key":"16_CR11","doi-asserted-by":"crossref","unstructured":"Morerio, P., Cavazza, J., Volpi, R., Vidal, R., Murino, V.: Curriculum dropout. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3544\u20133552 (2017)","DOI":"10.1109\/ICCV.2017.383"},{"key":"16_CR12","unstructured":"Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Dickstein, J.S.: On the expressive power of deep neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2847\u20132854. JMLR. org (2017)"},{"key":"16_CR13","unstructured":"Singh, S., Hoiem, D., Forsyth, D.: Swapout: learning an ensemble of deep architectures. In: Advances in Neural Information Processing Systems, pp. 28\u201336 (2016)"},{"issue":"1","key":"16_CR14","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929\u20131958 (2014)","journal-title":"J. Mach. Learn. Res."},{"key":"16_CR15","doi-asserted-by":"crossref","unstructured":"Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648\u2013656 (2015)","DOI":"10.1109\/CVPR.2015.7298664"},{"key":"16_CR16","unstructured":"Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using DropConnect. In: International Conference on Machine Learning, pp. 1058\u20131066 (2013)"},{"key":"16_CR17","unstructured":"Wang, S., et al.: Analysis of deep neural networks with extended data Jacobian matrix. In: International Conference on Machine Learning, pp. 718\u2013726 (2016)"},{"key":"16_CR18","unstructured":"Wang, S., Zhou, T., Bilmes, J.: JumpOut: improved dropout for deep neural networks with rectified linear units (2018)"},{"key":"16_CR19","unstructured":"Wang, S., Zhou, T., Bilmes, J.: Bias also matters: bias attribution for deep neural network explanation. In: International Conference on Machine Learning, pp. 6659\u20136667 (2019)"},{"key":"16_CR20","unstructured":"Wang, S., Manning, C.: Fast dropout training. In: International Conference on Machine Learning, pp. 118\u2013126 (2013)"},{"key":"16_CR21","unstructured":"Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)"},{"key":"16_CR22","doi-asserted-by":"crossref","unstructured":"Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)","DOI":"10.5244\/C.30.87"},{"key":"16_CR23","unstructured":"Zhuo, J., Zhu, J., Zhang, B.: Adaptive dropout rates for learning with corrupted features. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)"},{"key":"16_CR24","unstructured":"Zolna, K., Arpit, D., Suhubdy, D., Bengio, Y.: Fraternal dropout. arXiv preprint arXiv:1711.00066 (2017)"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:30:22Z","timestamp":1710250222000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_16","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}