{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:50:01Z","timestamp":1726105801644},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638351"},{"type":"electronic","value":"9783030638368"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63836-8_11","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"122-134","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["The Evaluation of Brain Age Prediction by Different Functional Brain Network Construction Methods"],"prefix":"10.1007","author":[{"given":"Hongfang","family":"Han","sequence":"first","affiliation":[]},{"given":"Xingliang","family":"Xiong","sequence":"additional","affiliation":[]},{"given":"Jianfeng","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Haixian","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Mengting","family":"Wei","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"issue":"9","key":"11_CR1","doi-asserted-by":"publisher","first-page":"418","DOI":"10.1016\/j.tics.2004.07.008","volume":"8","author":"O Sporns","year":"2004","unstructured":"Sporns, O., Chialvo, D.R., Kaiser, M., et al.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8(9), 418\u2013425 (2004)","journal-title":"Trends Cogn. Sci."},{"issue":"12","key":"11_CR2","doi-asserted-by":"publisher","first-page":"4286","DOI":"10.1002\/hbm.23309","volume":"37","author":"RL Muetzel","year":"2016","unstructured":"Muetzel, R.L., Blanken, L.M.E., Thijssen, S.F., et al.: Resting-state networks in 6-to-10 year old children. Hum. Brain Mapp. 37(12), 4286\u20134300 (2016)","journal-title":"Hum. Brain Mapp."},{"issue":"2018","key":"11_CR3","doi-asserted-by":"publisher","first-page":"498","DOI":"10.1016\/j.neuroimage.2018.02.066","volume":"173","author":"SG Vij","year":"2018","unstructured":"Vij, S.G., Nomi, J.S., Dajani, D.R., et al.: Evolution of spatial and temporal features of functional brain networks across the lifespan. Neuroimage 173(2018), 498\u2013508 (2018)","journal-title":"Neuroimage"},{"key":"11_CR4","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1016\/j.dcn.2015.11.004","volume":"17","author":"C Sole-Padulles","year":"2016","unstructured":"Sole-Padulles, C., Castro-Fornieles, J., de la Serna, E., et al.: Intrinsic connectivity networks from childhood to late adolescence: effects of age and sex. Cogn. Neurosci. 17, 35\u201344 (2016)","journal-title":"Cogn. Neurosci."},{"key":"11_CR5","doi-asserted-by":"crossref","unstructured":"Li, K., Guo, L., Li, G., et al.: Cortical surface based identification of brain networks using high spatial resolution resting state fMRI data. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 656\u2013659. IEEE (2010)","DOI":"10.1109\/ISBI.2010.5490089"},{"issue":"5","key":"11_CR6","doi-asserted-by":"publisher","first-page":"1076","DOI":"10.1109\/TMI.2010.2097275","volume":"30","author":"K Lee","year":"2011","unstructured":"Lee, K., Tak, S., Ye, J.C.: A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion. IEEE Trans. Med. Imaging 30(5), 1076\u20131089 (2011)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"11_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"140","DOI":"10.1007\/978-3-319-46675-0_16","volume-title":"Neural Information Processing","author":"X Li","year":"2016","unstructured":"Li, X., Hu, Z., Wang, H.: Overlapping community structure detection of brain functional network using non-negative matrix factorization. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 140\u2013147. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46675-0_16"},{"key":"11_CR8","doi-asserted-by":"publisher","first-page":"399","DOI":"10.1016\/j.neuroimage.2016.07.058","volume":"141","author":"L Qiao","year":"2016","unstructured":"Qiao, L., Zhang, H., Kim, M., et al.: Estimating functional brain networks by incorporating a modularity prior. Neuroimage 141, 399\u2013407 (2016)","journal-title":"Neuroimage"},{"issue":"1","key":"11_CR9","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","volume":"35","author":"G Liu","year":"2013","unstructured":"Liu, G., Lin, Z., Yan, S., et al.: Robust recovery of subspace structures by low rank representation. Pattern Anal. Mach. Intell. 35(1), 171\u2013184 (2013)","journal-title":"Pattern Anal. Mach. Intell."},{"issue":"5","key":"11_CR10","doi-asserted-by":"crossref","first-page":"2197","DOI":"10.1073\/pnas.0437847100","volume":"100","author":"DL Donoho","year":"2003","unstructured":"Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via $$\\ell _{{0}}$$ minimization. Proc. Nat. Acad. Sci. 100(5), 2197\u20132202 (2003)","journal-title":"Proc. Nat. Acad. Sci."},{"issue":"4","key":"11_CR11","doi-asserted-by":"crossref","first-page":"1711","DOI":"10.1109\/TCYB.2018.2883566","volume":"50","author":"M Brbic","year":"2020","unstructured":"Brbic, M., Kopriva, I.: $$\\ell _{{0}}$$-motivated low rank sparse subspace clustering. IEEE Trans. Cybern. 50(4), 1711\u20131725 (2020)","journal-title":"IEEE Trans. Cybern."},{"issue":"2013","key":"11_CR12","doi-asserted-by":"publisher","first-page":"58","DOI":"10.1016\/j.neuroimage.2013.02.055","volume":"75","author":"B Mwangi","year":"2013","unstructured":"Mwangi, B., Hasan, K.M., Soares, J.C.: Prediction of individual subject\u2019s age across the human lifespan using diffusion tensor imaging: a machine learning approach. Neuroimage 75(2013), 58\u201367 (2013)","journal-title":"Neuroimage"},{"issue":"2019","key":"11_CR13","doi-asserted-by":"publisher","first-page":"62","DOI":"10.3389\/fnhum.2019.00062","volume":"13","author":"J Zhai","year":"2019","unstructured":"Zhai, J., Li, K.: Predicting brain age based on spatial and temporal features of human brain functional networks. Front. Hum. Neurosci. 13(2019), 62 (2019)","journal-title":"Front. Hum. Neurosci."},{"key":"11_CR14","doi-asserted-by":"publisher","first-page":"152","DOI":"10.3389\/fnins.2012.00152","volume":"6","author":"KB Nooner","year":"2012","unstructured":"Nooner, K.B., Colcombe, S., Tobe, R., et al.: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front. Neurosci. 6, 152 (2012)","journal-title":"Front. Neurosci."},{"key":"11_CR15","first-page":"13","volume":"4","author":"C Yan","year":"2010","unstructured":"Yan, C., Zang, Y.: DPARSF: a MATLAB toolbox for \u201cpipeline\u201d data analysis of resting-state fMRI. Front. Neurosci. 4, 13 (2010)","journal-title":"Front. Neurosci."},{"key":"11_CR16","series-title":"Springer Optimization and Its Applications","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1007\/978-1-4419-9569-8_10","volume-title":"Fixed-Point Algorithms for Inverse Problems in Science and Engineering","author":"PL Combettes","year":"2011","unstructured":"Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. SOIA, vol. 49, pp. 185\u2013212. Springer, New York (2011). https:\/\/doi.org\/10.1007\/978-1-4419-9569-8_10"},{"issue":"1","key":"11_CR17","first-page":"1","volume":"3","author":"S Boyd","year":"2011","unstructured":"Boyd, S., Parikh, N., Chu, E., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Trends Mach. Learn. 3(1), 1\u2013122 (2011)","journal-title":"Trends Mach. Learn."},{"key":"11_CR18","unstructured":"Yu, Y.L.: Better approximation and faster algorithm using the proximal average. In: Advances in Neural Information Processing Systems, pp. 458\u2013466 (2013)"},{"issue":"5\u20136","key":"11_CR19","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1007\/s00041-008-9035-z","volume":"14","author":"T Blumensath","year":"2008","unstructured":"Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5\u20136), 629\u2013654 (2008). https:\/\/doi.org\/10.1007\/s00041-008-9035-z","journal-title":"J. Fourier Anal. Appl."},{"key":"11_CR20","unstructured":"Liang, J., Fadili, J., Peyr\u00e9, G.: A multi-step inertial forward-backward splitting method for non-convex optimization. In: Advances in Neural Information Processing Systems, vol. 2, no. 5, pp. 99\u2013110 (2016)"},{"issue":"3","key":"11_CR21","doi-asserted-by":"publisher","first-page":"1059","DOI":"10.1016\/j.neuroimage.2009.10.003","volume":"52","author":"M Rubinov","year":"2010","unstructured":"Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059\u20131069 (2010)","journal-title":"Neuroimage"},{"key":"11_CR22","unstructured":"Drucker, H., Burges, C.J.C., Kaufman, L., et al.: Support vector regression machines. In: Advances in Neural Information Processing Systems, vol. 9, pp. 155\u2013161 (1997)"},{"issue":"3","key":"11_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1961189.1961199","volume":"2","author":"CC Chang","year":"2011","unstructured":"Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1\u201327 (2011)","journal-title":"ACM Trans. Intell. Syst. Technol."},{"issue":"23","key":"11_CR24","doi-asserted-by":"publisher","first-page":"8577","DOI":"10.1073\/pnas.0601602103","volume":"103","author":"MEJ Newman","year":"2006","unstructured":"Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577\u20138582 (2006)","journal-title":"Proc. Natl. Acad. Sci."},{"key":"11_CR25","doi-asserted-by":"publisher","first-page":"38","DOI":"10.3389\/fncom.2013.00038","volume":"7","author":"S Vergun","year":"2013","unstructured":"Vergun, S., Deshpande, A.S., et al.: Characterizing functional connectivity differences in aging adults using machine learning on resting state fMRI data. Front. Comput. Neurosci. 7, 38 (2013)","journal-title":"Front. Comput. Neurosci."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63836-8_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:29:31Z","timestamp":1710250171000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63836-8_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638351","9783030638368"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63836-8_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}