{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:47:41Z","timestamp":1726105661876},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_93","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"815-823","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Multi-scale Attention Consistency for Multi-label Image Classification"],"prefix":"10.1007","author":[{"given":"Haotian","family":"Xu","sequence":"first","affiliation":[]},{"given":"Xiaobo","family":"Jin","sequence":"additional","affiliation":[]},{"given":"Qiufeng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Kaizhu","family":"Huang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"issue":"8","key":"93_CR1","doi-asserted-by":"publisher","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","volume":"26","author":"ML Zhang","year":"2013","unstructured":"Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819\u20131837 (2013)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"93_CR2","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-39431-8_1","volume-title":"Advances in Brain Inspired Cognitive Systems","author":"Y Cao","year":"2020","unstructured":"Cao, Y., Wang, Q.-F., Huang, K., Zhang, R.: Improving image caption performance with linguistic context. In: Ren, J., et al. (eds.) BICS 2019. LNCS (LNAI), vol. 11691, pp. 3\u201311. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-39431-8_1"},{"issue":"21","key":"93_CR3","doi-asserted-by":"publisher","first-page":"2531","DOI":"10.3390\/rs11212531","volume":"11","author":"Z Gao","year":"2019","unstructured":"Gao, Z., Liu, D., Huang, K., Huang, Y.: Context-aware human activity and smartphone position-mining with motion sensors. Remote Sens. 11(21), 2531 (2019)","journal-title":"Remote Sens."},{"issue":"2","key":"93_CR4","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.tics.2004.12.004","volume":"9","author":"N Lavie","year":"2005","unstructured":"Lavie, N.: Distracted and confused? Selective attention under load. Trends Cogn. Sci. 9(2), 75\u201382 (2005)","journal-title":"Trends Cogn. Sci."},{"key":"93_CR5","doi-asserted-by":"crossref","unstructured":"Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In Proceedings of the CVPR, pp. 2921\u20132929 (2016)","DOI":"10.1109\/CVPR.2016.319"},{"issue":"1","key":"93_CR6","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1146\/annurev.ne.18.030195.001205","volume":"18","author":"R Desimone","year":"1995","unstructured":"Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18(1), 193\u2013222 (1995)","journal-title":"Ann. Rev. Neurosci."},{"key":"93_CR7","doi-asserted-by":"crossref","unstructured":"Guo, H., Zheng, K., Fan, X., Yu, H., Wang, S.: Visual attention consistency under image transforms for multi-label image classification. In: Proceedings of the CVPR, pp. 729\u2013739 (2019)","DOI":"10.1109\/CVPR.2019.00082"},{"key":"93_CR8","unstructured":"Stollenga, M.F., Masci, J., Gomez, F., Schmidhuber, J.: Deep networks with internal selective attention through feedback connections. In: Advances in Neural Information Processing Systems, pp. 3545\u20133553 (2014)"},{"key":"93_CR9","unstructured":"Li, X., Zhao, F., Guo, Y.: Multi-label image classification with a probabilistic label enhancement model. In: UAI, vol. 1, p. 3 (2014)"},{"issue":"1","key":"93_CR10","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1109\/TPAMI.2014.2343234","volume":"37","author":"R Cabral","year":"2014","unstructured":"Cabral, R., De la Torre, F., Costeira, J.P., Bernardino, A.: Matrix completion for weakly-supervised multi-label image classification. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 121\u2013135 (2014)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"93_CR11","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the CVPR, pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"93_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-01234-2_1","volume-title":"Computer Vision \u2013 ECCV 2018","author":"S Woo","year":"2018","unstructured":"Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3\u201319. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_1"},{"key":"93_CR13","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"93_CR14","unstructured":"Dembczynski, K., Kotlowski, W., H\u00fcllermeier, E.: Consistent multilabel ranking through univariate losses. arXiv preprint arXiv:1206.6401 (2012)"},{"key":"93_CR15","doi-asserted-by":"crossref","unstructured":"Li, D., Chen, X., Huang, K.: Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 111\u2013115 (2015)","DOI":"10.1109\/ACPR.2015.7486476"},{"key":"93_CR16","unstructured":"Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: BAM: Bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018)"},{"key":"93_CR17","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the CVPR, pp. 248\u2013255(2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"93_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"684","DOI":"10.1007\/978-3-319-46466-4_41","volume-title":"Computer Vision \u2013 ECCV 2016","author":"Y Li","year":"2016","unstructured":"Li, Y., Huang, C., Loy, C.C., Tang, X.: Human attribute recognition by deep hierarchical contexts. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 684\u2013700. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46466-4_41"},{"key":"93_CR19","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1016\/j.patrec.2017.05.012","volume":"94","author":"H Guo","year":"2017","unstructured":"Guo, H., Fan, X., Wang, S.: Human attribute recognition by refining attention heat map. Pattern Recogn. Lett. 94, 38\u201345 (2017)","journal-title":"Pattern Recogn. Lett."},{"key":"93_CR20","doi-asserted-by":"crossref","unstructured":"Zhu, F., Li, H., Ouyang, W., Yu, N., Wang, X.: Learning spatial regularization with image-level supervisions for multi-label image classification. In: Proceedings of the CVPR, pp. 5513\u20135522 (2017)","DOI":"10.1109\/CVPR.2017.219"},{"key":"93_CR21","doi-asserted-by":"crossref","unstructured":"Sarafianos, N., Xu, X., Kakadiaris, I.A.: Deep imbalanced attribute classification using visual attention aggregation. In: Proceedings of the ECCV, pp. 680\u2013697 (2018)","DOI":"10.1007\/978-3-030-01252-6_42"},{"key":"93_CR22","doi-asserted-by":"crossref","unstructured":"Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440\u20131448 (2015)","DOI":"10.1109\/ICCV.2015.169"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_93","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T03:21:34Z","timestamp":1619234494000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_93"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_93","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}