{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:47:26Z","timestamp":1726105646963},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_82","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"717-725","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Sparse Lifting of Dense Vectors: A Unified Approach to Word and Sentence Representations"],"prefix":"10.1007","author":[{"given":"Senyue","family":"Hao","sequence":"first","affiliation":[]},{"given":"Wenye","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"unstructured":"Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence embeddings. In: ICLR 2017 (2017)","key":"82_CR1"},{"key":"82_CR2","first-page":"1137","volume":"3","author":"Y Bengio","year":"2003","unstructured":"Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137\u20131155 (2003)","journal-title":"J. Mach. Learn. Res."},{"issue":"3","key":"82_CR3","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1145\/1961189.1961199","volume":"2","author":"CC Chang","year":"2011","unstructured":"Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)","journal-title":"ACM Trans. Intell. Syst. Technol."},{"issue":"6364","key":"82_CR4","doi-asserted-by":"publisher","first-page":"793","DOI":"10.1126\/science.aam9868","volume":"358","author":"S Dasgupta","year":"2017","unstructured":"Dasgupta, S., Stevens, C., Navlakha, S.: A neural algorithm for a fundamental computing problem. Science 358(6364), 793\u2013796 (2017)","journal-title":"Science"},{"doi-asserted-by":"crossref","unstructured":"Ding, C., He, X., Simon, H.: On the equivalence of nonnegative matrix factorization and spectral clustering. In: SIAM SDM 2005, pp. 606\u2013610 (2005)","key":"82_CR5","DOI":"10.1137\/1.9781611972757.70"},{"issue":"1","key":"82_CR6","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1002\/aris.1440380105","volume":"38","author":"S Dumais","year":"2004","unstructured":"Dumais, S.: Latent semantic analysis. Ann. Rev. Inf. Sci. Technol. 38(1), 188\u2013230 (2004)","journal-title":"Ann. Rev. Inf. Sci. Technol."},{"doi-asserted-by":"crossref","unstructured":"Faruqui, M., Tsvetkov, Y., Yogatama, D., Dyer, C., Smith, N.: Sparse overcomplete word vector representations. arXiv:1506.02004 (2015)","key":"82_CR7","DOI":"10.3115\/v1\/P15-1144"},{"unstructured":"Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.: Convolutional sequence to sequence learning. arXiv:1705.03122 (2017)","key":"82_CR8"},{"doi-asserted-by":"crossref","unstructured":"Hu, M., Liu, B.: Mining and summarizing customer reviews. In: ACM SIGKDD 2004, pp. 168\u2013177 (2004)","key":"82_CR9","DOI":"10.1145\/1014052.1014073"},{"doi-asserted-by":"crossref","unstructured":"Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: ECML 1998, pp. 137\u2013142 (1998)","key":"82_CR10","DOI":"10.1007\/BFb0026683"},{"doi-asserted-by":"crossref","unstructured":"Kim, Y.: Convolutional neural networks for sentence classification. arXiv:1408.5882 (2014)","key":"82_CR11","DOI":"10.3115\/v1\/D14-1181"},{"issue":"3","key":"82_CR12","doi-asserted-by":"publisher","first-page":"545","DOI":"10.1007\/s10898-014-0247-2","volume":"62","author":"D Kuang","year":"2015","unstructured":"Kuang, D., Yun, S., Park, H.: Symnmf: nonnegative low-rank approximation of a similarity matrix for graph clustering. J. Global Optim. 62(3), 545\u2013574 (2015)","journal-title":"J. Global Optim."},{"unstructured":"Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: ICML 2015, pp. 957\u2013966 (2015)","key":"82_CR13"},{"doi-asserted-by":"crossref","unstructured":"Lebret, R., Collobert, R.: Word emdeddings through hellinger PCA. arXiv:1312.5542 (2013)","key":"82_CR14","DOI":"10.3115\/v1\/E14-1051"},{"issue":"6755","key":"82_CR15","doi-asserted-by":"publisher","first-page":"788","DOI":"10.1038\/44565","volume":"401","author":"D Lee","year":"1999","unstructured":"Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)","journal-title":"Nature"},{"unstructured":"Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. In: NIPS 2001, pp. 556\u2013562 (2001)","key":"82_CR16"},{"doi-asserted-by":"crossref","unstructured":"Li, W.: Modeling winner-take-all competition in sparse binary projections. In: ECML-PKDD 2020 (2020)","key":"82_CR17","DOI":"10.1007\/978-3-030-67658-2_26"},{"unstructured":"Li, W., Mao, J., Zhang, Y., Cui, S.: Fast similarity search via optimal sparse lifting. In: NeurIPS 2018, pp. 176\u2013184 (2018)","key":"82_CR18"},{"doi-asserted-by":"crossref","unstructured":"Li, X., Roth, D.: Learning question classifiers. In: COLING 2002, pp. 1\u20137 (2002)","key":"82_CR19","DOI":"10.3115\/1072228.1072378"},{"doi-asserted-by":"crossref","unstructured":"Ma, C., Gu, C., Li, W., Cui, S.: Large-scale image retrieval with sparse binary projections. In: ACM SIGIR 2020, pp. 1817\u20131820 (2020)","key":"82_CR20","DOI":"10.1145\/3397271.3401261"},{"unstructured":"McDonald, S., Ramscar, M.: Testing the distributional hypothesis: the influence of context on judgements of semantic similarity. In: CogSci 2001 (2001)","key":"82_CR21"},{"unstructured":"Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv:1301.3781 (2013)","key":"82_CR22"},{"unstructured":"Murphy, B., Talukdar, P., Mitchell, T.: Learning effective and interpretable semantic models using non-negative sparse embedding. In: COLING 2012, pp. 1933\u20131950 (2012)","key":"82_CR23"},{"doi-asserted-by":"crossref","unstructured":"Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: ACL 2005, pp. 115\u2013124 (2005)","key":"82_CR24","DOI":"10.3115\/1219840.1219855"},{"doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: EMNLP 2014, pp. 1532\u20131543 (2014)","key":"82_CR25","DOI":"10.3115\/v1\/D14-1162"},{"key":"82_CR26","volume-title":"Introduction to Modern Information Retrieval","author":"G Salton","year":"1986","unstructured":"Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill Inc., New York (1986)"},{"doi-asserted-by":"crossref","unstructured":"Subramanian, A., Pruthi, D., Jhamtani, H., Berg-Kirkpatrick, T., Hovy, E.: Spine: Sparse interpretable neural embeddings. In: AAAI 2018, pp. 4921\u20134928 (2018)","key":"82_CR27","DOI":"10.1609\/aaai.v32i1.11935"},{"unstructured":"Sun, F., Guo, J., Lan, Y., Xu, J., Cheng, X.: Sparse word embeddings using l1 regularized online learning. In: IJCAI 2016, pp. 2915\u20132921 (2016)","key":"82_CR28"},{"unstructured":"Turney, P.: Leveraging term banks for answering complex questions: a case for sparse vectors. arXiv:1704.03543 (2017)","key":"82_CR29"},{"issue":"2\u20133","key":"82_CR30","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1007\/s10579-005-7880-9","volume":"39","author":"J Wiebe","year":"2005","unstructured":"Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 39(2\u20133), 165\u2013210 (2005)","journal-title":"Lang. Resour. Eval."},{"doi-asserted-by":"crossref","unstructured":"Yang, J., Jiang, Y., Hauptmann, A., Ngo, C.: Evaluating bag-of-visual-words representations in scene classification. In: ACM SIGMM MIR 2007, pp. 197\u2013206 (2007)","key":"82_CR31","DOI":"10.1145\/1290082.1290111"},{"unstructured":"Yogatama, D., Faruqui, M., Dyer, C., Smith, N.: Learning word representations with hierarchical sparse coding. In: ICML 2015, pp. 87\u201396 (2015)","key":"82_CR32"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_82","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,28]],"date-time":"2022-11-28T16:07:12Z","timestamp":1669651632000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_82"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_82","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}