{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:47:17Z","timestamp":1726105637844},"publisher-location":"Cham","reference-count":9,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_78","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T04:12:07Z","timestamp":1605672727000},"page":"685-692","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Multitask Learning Based on Constrained Hierarchical Attention Network for Multi-aspect Sentiment Classification"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1211-6329","authenticated-orcid":false,"given":"Yang","family":"Gao","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0722-152X","authenticated-orcid":false,"given":"Jianxun","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8699-8825","authenticated-orcid":false,"given":"Pei","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3310-8347","authenticated-orcid":false,"given":"Dong","family":"Zhou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4436-811X","authenticated-orcid":false,"given":"Peng","family":"Yuan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"78_CR1","unstructured":"Bakshi, R.K., Kaur, N., Kaur, R., et al.: Opinion mining and sentiment analysis. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 452\u2013455. IEEE (2016)"},{"key":"78_CR2","doi-asserted-by":"crossref","unstructured":"Wang, Y., Huang, M., Zhu, X., et al.: Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 606\u2013615 (2016)","DOI":"10.18653\/v1\/D16-1058"},{"key":"78_CR3","doi-asserted-by":"crossref","unstructured":"Ma, D., Li, S., Zhang, X., et al.: Interactive attention networks for aspect-level sentiment classification. arXiv preprint arXiv:1709.00893 (2017)","DOI":"10.24963\/ijcai.2017\/568"},{"key":"78_CR4","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1007\/978-981-10-6805-8_17","volume-title":"Social Media Processing","author":"X Wang","year":"2017","unstructured":"Wang, X., Chen, G.: Dependency-attention-based LSTM for target-dependent sentiment analysis. In: Cheng, X., Ma, W., Liu, H., Shen, H., Feng, S., Xie, X. (eds.) SMP 2017. CCIS, vol. 774, pp. 206\u2013217. Springer, Singapore (2017). https:\/\/doi.org\/10.1007\/978-981-10-6805-8_17"},{"key":"78_CR5","doi-asserted-by":"crossref","unstructured":"Wang, J., Li, J., Li, S., et al.: Aspect sentiment classification with both word-level and clause-level attention networks. In: IJCAI, vol. 2018, pp. 4439\u20134445 (2018)","DOI":"10.24963\/ijcai.2018\/617"},{"key":"78_CR6","doi-asserted-by":"crossref","unstructured":"Nguyen, H.T., Le Nguyen, M.: Effective attention networks for aspect-level sentiment classification. In: 2018 10th International Conference on Knowledge and Systems Engineering (KSE), pp. 25\u201330. IEEE (2018)","DOI":"10.1109\/KSE.2018.8573324"},{"key":"78_CR7","doi-asserted-by":"crossref","unstructured":"Cheng, J., Zhao, S., Zhang, J., et al.: Aspect-level sentiment classification with heat (hierarchical attention) network. In: Proceedings of the ACM on Conference on Information and Knowledge Management, vol. 2017, pp. 97\u2013106 (2017)","DOI":"10.1145\/3132847.3133037"},{"key":"78_CR8","doi-asserted-by":"publisher","first-page":"168548","DOI":"10.1109\/ACCESS.2019.2954590","volume":"7","author":"Y Gao","year":"2019","unstructured":"Gao, Y., Liu, J., Li, P., et al.: CE-HEAT: an aspect-level sentiment classification approach with collaborative extraction hierarchical attention network. IEEE Access 7, 168548\u2013168556 (2019)","journal-title":"IEEE Access"},{"key":"78_CR9","doi-asserted-by":"crossref","unstructured":"Hu, M., Zhao, S., Zhang, L., et al.: CAN: constrained attention networks for multi-aspect sentiment analysis. arXiv preprint arXiv:1812.10735 (2018)","DOI":"10.18653\/v1\/D19-1467"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_78","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,28]],"date-time":"2022-11-28T11:03:57Z","timestamp":1669633437000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_78"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":9,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_78","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}