{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:59:12Z","timestamp":1726106352839},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_7","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"59-68","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Efficient Binary Multi-view Subspace Learning for Instance-Level Image Retrieval"],"prefix":"10.1007","author":[{"given":"Zhijian","family":"Wu","sequence":"first","affiliation":[]},{"given":"Jun","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jianhua","family":"Xu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"7_CR1","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097\u20131105 (2012)"},{"key":"7_CR2","doi-asserted-by":"crossref","unstructured":"Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPRW, pp. 512\u2013519 (2014)","DOI":"10.1109\/CVPRW.2014.131"},{"key":"7_CR3","doi-asserted-by":"crossref","unstructured":"Wan, J., et al.: Deep learning for content-based image retrieval: a comprehensive study. In: ACM MM, pp. 157\u2013166 (2014)","DOI":"10.1145\/2647868.2654948"},{"key":"7_CR4","doi-asserted-by":"crossref","unstructured":"Yandex, A.B., Lempitsky, V.: Aggregating local deep features for image retrieval. In: ICCV, pp. 1269\u20131277 (2015)","DOI":"10.1109\/ICCV.2015.150"},{"key":"7_CR5","doi-asserted-by":"crossref","unstructured":"Li, J., Yang, B., Yang, W., Sun, C., Zhang, H.: When deep meets shallow: subspace-based multi-view fusion for instance-level image retrieval. In: ROBIO, pp. 486\u2013492 (2018)","DOI":"10.1109\/ROBIO.2018.8665207"},{"issue":"5","key":"7_CR6","doi-asserted-by":"publisher","first-page":"1154","DOI":"10.1109\/TPAMI.2017.2676779","volume":"40","author":"W Zhou","year":"2018","unstructured":"Zhou, W., Li, H., Sun, J., Tian, Q.: Collaborative index embedding for image retrieval. IEEE TPAMI 40(5), 1154\u20131166 (2018)","journal-title":"IEEE TPAMI"},{"issue":"1","key":"7_CR7","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1109\/TPAMI.2011.103","volume":"34","author":"C Strecha","year":"2012","unstructured":"Strecha, C., Bronstein, A.M., Bronstein, M.M., Fua, P.: LDAHash: improved matching with smaller descriptors. IEEE TPAMI 34(1), 66\u201378 (2012)","journal-title":"IEEE TPAMI"},{"issue":"1","key":"7_CR8","first-page":"212","volume":"29","author":"J Zhang","year":"2019","unstructured":"Zhang, J., Peng, Y.: SSDH: semi-supervised deep hashing for large scale image retrieval. IEEE TCSVT 29(1), 212\u2013225 (2019)","journal-title":"IEEE TCSVT"},{"key":"7_CR9","doi-asserted-by":"crossref","unstructured":"Liu, X., Huang, L., Deng, C., Lu, J., Lang, B.: Multi-view complementary hash tables for nearest neighbor search. In: ICCV, pp. 1107\u20131115 (2015)","DOI":"10.1109\/ICCV.2015.132"},{"key":"7_CR10","first-page":"4643","volume":"29","author":"L Zhu","year":"2020","unstructured":"Zhu, L., Lu, X., Cheng, Z., Li, J., Zhang, H.: Deep collaborative multi-view hashing for large-scale image search. IEEE TIP 29, 4643\u20134655 (2020)","journal-title":"IEEE TIP"},{"issue":"5","key":"7_CR11","doi-asserted-by":"publisher","first-page":"1224","DOI":"10.1109\/TPAMI.2017.2709749","volume":"40","author":"L Zheng","year":"2018","unstructured":"Zheng, L., Yang, Y., Tian, Q.: SIFT meets CNN: a decade survey of instance retrieval. IEEE TPAMI 40(5), 1224\u20131244 (2018)","journal-title":"IEEE TPAMI"},{"issue":"4","key":"7_CR12","doi-asserted-by":"publisher","first-page":"769","DOI":"10.1109\/TPAMI.2017.2699960","volume":"40","author":"J Wang","year":"2018","unstructured":"Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on learning to hash. IEEE TPAMI 40(4), 769\u2013790 (2018)","journal-title":"IEEE TPAMI"},{"key":"7_CR13","doi-asserted-by":"crossref","unstructured":"Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: CVPR, pp. 817\u2013824 (2011)","DOI":"10.1109\/CVPR.2011.5995432"},{"key":"7_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"304","DOI":"10.1007\/978-3-540-88682-2_24","volume-title":"Computer Vision \u2013 ECCV 2008","author":"H Jegou","year":"2008","unstructured":"Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 304\u2013317. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-88682-2_24"},{"key":"7_CR15","doi-asserted-by":"crossref","unstructured":"Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR, pp. 2161\u20132168 (2006)","DOI":"10.1109\/CVPR.2006.264"},{"key":"7_CR16","doi-asserted-by":"crossref","unstructured":"Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR, pp. 1\u20138 (2007)","DOI":"10.1109\/CVPR.2007.383172"},{"key":"7_CR17","doi-asserted-by":"publisher","first-page":"202","DOI":"10.1016\/j.neucom.2016.04.047","volume":"207","author":"J Li","year":"2016","unstructured":"Li, J., Xu, C., Gong, M., Xing, J., Yang, W., Sun, C.: SERVE: soft and equalized residual vectors for image retrieval. Neurocomputing 207, 202\u2013212 (2016)","journal-title":"Neurocomputing"},{"key":"7_CR18","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR, pp. 1\u201314 (2015)"},{"key":"7_CR19","doi-asserted-by":"crossref","unstructured":"Arandjelovi\u0107, R., Zisserman, A.: All about VLAD. In: CVPR, pp. 1578\u20131585 (2013)","DOI":"10.1109\/CVPR.2013.207"},{"key":"7_CR20","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1016\/j.neucom.2017.03.072","volume":"249","author":"A Alzubi","year":"2017","unstructured":"Alzubi, A., Amira, A., Ramzan, N.: Content-based image retrieval with compact deep convolutional features. Neurocomputing 249, 95\u2013105 (2017)","journal-title":"Neurocomputing"},{"key":"7_CR21","doi-asserted-by":"crossref","unstructured":"Ng, J.Y., Yang, F., Davis, L.S.: Exploiting local features from deep networks for image retrieval. In: CVPRW, pp. 53\u201361 (2015)","DOI":"10.1109\/CVPRW.2015.7301272"},{"key":"7_CR22","unstructured":"Jiang, Q., Li, W.: Scalable graph hashing with feature transformation. In: IJCAI, pp. 2248\u20132254 (2015)"},{"key":"7_CR23","unstructured":"Yu, F.X., Kumar, S., Gong, Y., Chang, S.: Circulant binary embedding. In: ICML, pp. 946\u2013954 (2014)"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,17]],"date-time":"2024-08-17T15:56:17Z","timestamp":1723910177000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_7","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}