{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:46:58Z","timestamp":1726105618884},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_69","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"606-614","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Voxel Classification Based Automatic Hip Cartilage Segmentation from Routine Clinical MR Images"],"prefix":"10.1007","author":[{"given":"Najini","family":"Harischandra","sequence":"first","affiliation":[]},{"given":"Anuja","family":"Dharmaratne","sequence":"additional","affiliation":[]},{"given":"Flavia M.","family":"Cicuttini","sequence":"additional","affiliation":[]},{"given":"YuanYuan","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"issue":"1","key":"69_CR1","doi-asserted-by":"publisher","first-page":"403","DOI":"10.1002\/mrm.25598","volume":"75","author":"SS Chandra","year":"2016","unstructured":"Chandra, S.S., et al.: Automated analysis of hip joint cartilage combining MR T2 and three-dimensional fast-spin-echo images. Magn. Reson. Med. 75(1), 403\u2013413 (2016). https:\/\/doi.org\/10.1002\/mrm.25598","journal-title":"Magn. Reson. Med."},{"issue":"3","key":"69_CR2","doi-asserted-by":"publisher","first-page":"297","DOI":"10.2307\/1932409","volume":"26","author":"LR Dice","year":"1945","unstructured":"Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297\u2013302 (1945)","journal-title":"Ecology"},{"issue":"6","key":"69_CR3","doi-asserted-by":"publisher","first-page":"1617","DOI":"10.1088\/0031-9155\/52\/6\/005","volume":"52","author":"J Fripp","year":"2007","unstructured":"Fripp, J., Crozier, S., Warfield, S.K., Ourselin, S.S.: Automatic segmentation of the bone and extraction of the bone & cartilage interface from magnetic resonance images of the knee. Phys. Med. Biol. 52(6), 1617\u20131631 (2007). https:\/\/doi.org\/10.1088\/0031-9155\/52\/6\/005","journal-title":"Phys. Med. Biol."},{"key":"69_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"516","DOI":"10.1007\/3-540-45468-3_62","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2001","author":"G Gerig","year":"2001","unstructured":"Gerig, G., Jomier, M., Chakos, M.: Valmet: a new validation tool for assessing and improving 3D object segmentation. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 516\u2013523. Springer, Heidelberg (2001). https:\/\/doi.org\/10.1007\/3-540-45468-3_62"},{"key":"69_CR5","doi-asserted-by":"publisher","first-page":"S439","DOI":"10.1016\/j.joca.2018.02.843","volume":"26","author":"M Girard","year":"2018","unstructured":"Girard, M., Pedoia, V., Norman, B., Rossi-Devries, J., Majumdar, S.: Automatic segmentation of hip cartilage with deep convolutional neural nets for the evaluation of acetabulum and femoral T1$$\\rho $$ and T2 relaxation times. Osteoarthritis Cartilage 26, S439\u2013S440 (2018). https:\/\/doi.org\/10.1016\/j.joca.2018.02.843","journal-title":"Osteoarthritis Cartilage"},{"key":"69_CR6","volume-title":"The ITK Software Guide Book 2: Design and Functionality","author":"HJ Johnson","year":"2015","unstructured":"Johnson, H.J., McCormick, M.M., Ibanez, L.: The ITK Software Guide Book 2: Design and Functionality. Kitware Incorporated, New York (2015)"},{"issue":"1","key":"69_CR7","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1002\/art.23176","volume":"58","author":"RC Lawrence","year":"2008","unstructured":"Lawrence, R.C., et al.: Estimates of the prevalence of arthritis and other rheumatic conditions in the united states. Arthritis Rheum. 58(1), 26\u201335 (2008). https:\/\/doi.org\/10.1002\/art.23176","journal-title":"Arthritis Rheum."},{"issue":"8","key":"69_CR8","doi-asserted-by":"publisher","first-page":"650","DOI":"10.1016\/j.joca.2004.04.009","volume":"12","author":"T Nishii","year":"2004","unstructured":"Nishii, T., Sugano, N., Sato, Y., Tanaka, H., Miki, H., Yoshikawa, H.: Three-dimensional distribution of acetabular cartilage thickness in patients with hip dysplasia: a fully automated computational analysis of MR imaging. Osteoarthritis Cartilage 12(8), 650\u2013657 (2004). https:\/\/doi.org\/10.1016\/j.joca.2004.04.009","journal-title":"Osteoarthritis Cartilage"},{"key":"69_CR9","unstructured":"Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines (1998)"},{"issue":"1","key":"69_CR10","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1016\/j.arth.2015.08.009","volume":"31","author":"AJ Ramme","year":"2016","unstructured":"Ramme, A.J., et al.: Evaluation of automated volumetric cartilage quantification for hip preservation surgery. J. Arthroplasty 31(1), 64\u201369 (2016). https:\/\/doi.org\/10.1016\/j.arth.2015.08.009","journal-title":"J. Arthroplasty"},{"key":"69_CR11","doi-asserted-by":"publisher","first-page":"352","DOI":"10.1016\/S0531-5131(01)00029-2","volume":"1230","author":"Y Sato","year":"2001","unstructured":"Sato, Y., et al.: A fully automated method for segmentation and thickness determination of hip joint cartilage from 3D MR data. Int. Congr. Ser. 1230, 352\u2013358 (2001). https:\/\/doi.org\/10.1016\/S0531-5131(01)00029-2","journal-title":"Int. Congr. Ser."},{"issue":"10","key":"69_CR12","doi-asserted-by":"publisher","first-page":"1511","DOI":"10.1016\/j.joca.2014.08.012","volume":"22","author":"C Siversson","year":"2014","unstructured":"Siversson, C., Akhondi-Asl, A., Bixby, S., Kim, Y.J., Warfield, S.K.: Three-dimensional hip cartilage quality assessment of morphology and dGEMRIC by planar maps and automated segmentation. Osteoarthritis Cartilage 22(10), 1511\u20131515 (2014). https:\/\/doi.org\/10.1016\/j.joca.2014.08.012","journal-title":"Osteoarthritis Cartilage"},{"issue":"12","key":"69_CR13","doi-asserted-by":"publisher","first-page":"2157","DOI":"10.1093\/rheumatology\/ker283","volume":"50","author":"N Sofat","year":"2011","unstructured":"Sofat, N., Ejindu, V., Kiely, P.: What makes osteoarthritis painful? The evidence for local and central pain processing. Rheumatology 50(12), 2157\u20132165 (2011). https:\/\/doi.org\/10.1093\/rheumatology\/ker283","journal-title":"Rheumatology"},{"issue":"6","key":"69_CR14","doi-asserted-by":"publisher","first-page":"1310","DOI":"10.1109\/TMI.2010.2046908","volume":"29","author":"NJ Tustison","year":"2010","unstructured":"Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310\u20131320 (2010). https:\/\/doi.org\/10.1109\/TMI.2010.2046908","journal-title":"IEEE Trans. Med. Imaging"},{"key":"69_CR15","unstructured":"Van Ginneken, B., Heimann, T., Styner, M.: 3D segmentation in the clinic: a grand challenge, pp. 7\u201315 (2007)"},{"issue":"23","key":"69_CR16","doi-asserted-by":"publisher","first-page":"7245","DOI":"10.1088\/0031-9155\/59\/23\/7245","volume":"59","author":"Y Xia","year":"2014","unstructured":"Xia, Y., Chandra, S.S., Engstrom, C., Strudwick, M.W., Crozier, S., Fripp, J.: Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching. Phys. Med. Biol. 59(23), 7245\u201366 (2014). https:\/\/doi.org\/10.1088\/0031-9155\/59\/23\/7245","journal-title":"Phys. Med. Biol."},{"issue":"20","key":"69_CR17","doi-asserted-by":"publisher","first-page":"7375","DOI":"10.1088\/0031-9155\/58\/20\/7375","volume":"58","author":"Y Xia","year":"2013","unstructured":"Xia, Y., Fripp, J., Chandra, S.S., Schwarz, R., Engstrom, C., Crozier, S.: Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys. Med. Biol. 58(20), 7375\u201390 (2013). https:\/\/doi.org\/10.1088\/0031-9155\/58\/20\/7375","journal-title":"Phys. Med. Biol."},{"key":"69_CR18","doi-asserted-by":"publisher","unstructured":"Xia, Y., Manjon, J.V., Engstrom, C., Crozier, S., Salvado, O., Fripp, J.: Automated cartilage segmentation from 3D MR images of hip joint using an ensemble of neural networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 1070\u20131073. IEEE (2017). https:\/\/doi.org\/10.1109\/ISBI.2017.7950701","DOI":"10.1109\/ISBI.2017.7950701"},{"issue":"10","key":"69_CR19","doi-asserted-by":"publisher","first-page":"1731","DOI":"10.1016\/j.mri.2013.06.005","volume":"31","author":"K Zhang","year":"2013","unstructured":"Zhang, K., Lu, W., Marziliano, P.: Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Magn. Reson. Imaging 31(10), 1731\u20131743 (2013). https:\/\/doi.org\/10.1016\/j.mri.2013.06.005","journal-title":"Magn. Reson. Imaging"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_69","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T22:26:23Z","timestamp":1619303183000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_69"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_69","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}