{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:47:04Z","timestamp":1726105624088},"publisher-location":"Cham","reference-count":16,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_66","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"580-588","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["TSGYE: Two-Stage Grape Yield Estimation"],"prefix":"10.1007","author":[{"given":"Geng","family":"Deng","sequence":"first","affiliation":[]},{"given":"Tianyu","family":"Geng","sequence":"additional","affiliation":[]},{"given":"Chengxin","family":"He","sequence":"additional","affiliation":[]},{"given":"Xinao","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Bangjun","family":"He","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Duan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"66_CR1","doi-asserted-by":"crossref","unstructured":"Nellithimaru, A.K., Kantor, G.A.: ROLS: Robust object-level SLAM for grape counting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2648\u20132656 (2019)","DOI":"10.1109\/CVPRW.2019.00321"},{"key":"66_CR2","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1016\/j.compind.2018.03.017","volume":"99","author":"L Luo","year":"2018","unstructured":"Luo, L., Tang, Y., Lu, Q., Chen, X., Zhang, P., Zou, X.: A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard. Comput. Ind. 99, 130\u2013139 (2018)","journal-title":"Comput. Ind."},{"key":"66_CR3","doi-asserted-by":"crossref","unstructured":"Nuske, S., Achar, S., Bates, T., Narasimhan, S.G., Singh, S.: Yield estimation in vineyards by visual grape detection. In: 2011 IEEE\/RSJ International Conference on Intelligent Robots and Systems, pp. 2352\u20132358. IEEE (2011)","DOI":"10.1109\/IROS.2011.6095069"},{"key":"66_CR4","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1016\/j.compag.2018.11.012","volume":"156","author":"P Barr\u00e9","year":"2019","unstructured":"Barr\u00e9, P., Herzog, K., H\u00f6fle, R., Hullin, M.B., T\u00f6pfer, R., Steinhage, V.: Automated phenotyping of epicuticular waxes of grapevine berries using light separation and convolutional neural networks. Comput. Electron. Agric. 156, 263\u2013274 (2019)","journal-title":"Comput. Electron. Agric."},{"issue":"10","key":"66_CR5","doi-asserted-by":"publisher","first-page":"3443","DOI":"10.3390\/app10103443","volume":"10","author":"J Naranjo-Torres","year":"2020","unstructured":"Naranjo-Torres, J., Mora, M., Hern\u00e1ndez-Garc\u00eda, R., Barrientos, R.J., Fredes, C., Valenzuela, A.: A review of convolutional neural network applied to fruit image processing. Appl. Sci. 10(10), 3443 (2020)","journal-title":"Appl. Sci."},{"key":"66_CR6","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1016\/j.isprsjprs.2020.04.002","volume":"164","author":"L Zabawa","year":"2020","unstructured":"Zabawa, L., Kicherer, A., Klingbeil, L., T\u00f6pfer, R., Kuhlmann, H., Roscher, R.: Counting of grapevine berries in images via semantic segmentation using convolutional neural networks. ISPRS J. Photogrammetry Remote Sens. 164, 73\u201383 (2020)","journal-title":"ISPRS J. Photogrammetry Remote Sens."},{"key":"66_CR7","doi-asserted-by":"publisher","first-page":"105247","DOI":"10.1016\/j.compag.2020.105247","volume":"170","author":"TT Santos","year":"2020","unstructured":"Santos, T.T., de Souza, L.L., dos Santos, A.A., Avila, S.: Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput. Electron. Agric. 170, 105247 (2020)","journal-title":"Comput. Electron. Agric."},{"issue":"3","key":"66_CR8","doi-asserted-by":"publisher","first-page":"196","DOI":"10.1111\/j.1755-0238.2004.tb00022.x","volume":"10","author":"GM Dunn","year":"2004","unstructured":"Dunn, G.M., Martin, S.R.: Yield prediction from digital image analysis: a technique with potential for vineyard assessments prior to harvest. Aust. J. Grape Wine Res. 10(3), 196\u2013198 (2004)","journal-title":"Aust. J. Grape Wine Res."},{"key":"66_CR9","doi-asserted-by":"crossref","unstructured":"Paul Cohen, J., Boucher, G., Glastonbury, C.A., Lo, H.Z., Bengio, Y.: Count-ception: counting by fully convolutional redundant counting. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 18\u201326 (2017)","DOI":"10.1109\/ICCVW.2017.9"},{"key":"66_CR10","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.compag.2018.02.021","volume":"148","author":"A Aquino","year":"2018","unstructured":"Aquino, A., Barrio, I., Diago, M.P., Millan, B., Tardaguila, J.: vitisBerry: an android-smartphone application to early evaluate the number of grapevine berries by means of image analysis. Comput. Electron. Agric. 148, 19\u201328 (2018)","journal-title":"Comput. Electron. Agric."},{"key":"66_CR11","doi-asserted-by":"crossref","unstructured":"Nellithimaru, A.K., Kantor, G.A.: ROLS : robust object-level SLAM for grape counting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2648\u20132656 (2019)","DOI":"10.1109\/CVPRW.2019.00321"},{"key":"66_CR12","doi-asserted-by":"crossref","unstructured":"Bargoti, S., Underwood, J.: Deep fruit detection in orchards. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3626\u20133633. IEEE (2017)","DOI":"10.1109\/ICRA.2017.7989417"},{"key":"66_CR13","unstructured":"Goodfelow, I., Bengio, Y., Courville, A.: Deep Learning (Adaptive Computation and Machine Learning Series). MIT Press (2016)"},{"key":"66_CR14","unstructured":"Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)"},{"key":"66_CR15","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1016\/j.compag.2013.11.008","volume":"100","author":"R Roscher","year":"2017","unstructured":"Roscher, R., Herzog, K., Kunkel, A., Kicherer, A., T\u00f6pfer, R., F\u00f6rstner, W.: Automated image analysis framework for the high-throughput determination of grapevine berry sizes using conditional random fields. Comput. Electron. Agri. 100, 148\u2013158 (2017)","journal-title":"Comput. Electron. Agri."},{"key":"66_CR16","doi-asserted-by":"crossref","unstructured":"Coviello, L., Cristoforetti, M., Jurman, G., Furlanello, C.: In-field grape berries counting for yield estimation using dilated CNNS. arXiv preprint arXiv:1909.12083 (2019)","DOI":"10.3390\/app10144870"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_66","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T22:20:22Z","timestamp":1619302822000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_66"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_66","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}