{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:46:46Z","timestamp":1726105606831},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_59","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"516-525","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Pixel-Semantic Revising of Position: One-Stage Object Detector with Shared Encoder-Decoder"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7454-5001","authenticated-orcid":false,"given":"Qian","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2250-5224","authenticated-orcid":false,"given":"Nan","family":"Guo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4598-1685","authenticated-orcid":false,"given":"Xiaochun","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Dongrui","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Zhimin","family":"Tang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"issue":"12","key":"59_CR1","doi-asserted-by":"publisher","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","volume":"39","author":"V Badrinarayanan","year":"2017","unstructured":"Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481\u20132495 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"59_CR2","unstructured":"Bae, S.H.: Object detection based on region decomposition and assembly"},{"key":"59_CR3","unstructured":"Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades"},{"key":"59_CR4","unstructured":"Dai, J., Yi, L., He, K., Jian, S.: R-FCN: object detection via region-based fully convolutional networks (2016)"},{"key":"59_CR5","unstructured":"Fei, W., et al.: Residual attention network for image classification (2017)"},{"key":"59_CR6","unstructured":"Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)"},{"key":"59_CR7","doi-asserted-by":"crossref","unstructured":"Girshick, R.: Fast R-CNN. In: Computer Science (2015)","DOI":"10.1109\/ICCV.2015.169"},{"key":"59_CR8","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition (2014)","DOI":"10.1109\/CVPR.2014.81"},{"key":"59_CR9","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"issue":"3","key":"59_CR10","doi-asserted-by":"publisher","first-page":"1010","DOI":"10.1109\/TITS.2018.2838132","volume":"20","author":"X Hu","year":"2019","unstructured":"Hu, X., Xu, X., Xiao, Y., Chen, H., Heng, P.A.: SINet: a scale-insensitive convolutional neural network for fast vehicle detection. IEEE Trans. Intell. Transp. Syst. 20(3), 1010\u20131019 (2019)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"59_CR11","unstructured":"Huang, L., Yi, Y., Deng, Y., Yu, Y.: DenseBox: unifying landmark localization with end to end object detection. In: Computer Science (2015)"},{"key":"59_CR12","unstructured":"Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017\u20132025 (2015)"},{"key":"59_CR13","doi-asserted-by":"crossref","unstructured":"Kong, T., Sun, F., Yao, A., Liu, H., Lu, M., Chen, Y.: RON: reverse connection with objectness prior networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5936\u20135944 (2017)","DOI":"10.1109\/CVPR.2017.557"},{"key":"59_CR14","doi-asserted-by":"crossref","unstructured":"Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints (2018)","DOI":"10.1007\/978-3-030-01264-9_45"},{"key":"59_CR15","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Doll\u00e1r, P., Girshick, R., He, K., Belongie, S.: Feature pyramid networks for object detection (2016)","DOI":"10.1109\/CVPR.2017.106"},{"issue":"99","key":"59_CR16","first-page":"2999","volume":"PP","author":"TY Lin","year":"2017","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 2999\u20133007 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"59_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-3-319-46448-0_2","volume-title":"Computer Vision \u2013 ECCV 2016","author":"W Liu","year":"2016","unstructured":"Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21\u201337. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_2"},{"key":"59_CR18","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2015)","DOI":"10.1109\/CVPR.2016.91"},{"key":"59_CR19","doi-asserted-by":"crossref","unstructured":"Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision & Pattern Recognition (2017)","DOI":"10.1109\/CVPR.2017.690"},{"key":"59_CR20","unstructured":"Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement (2018)"},{"issue":"6","key":"59_CR21","doi-asserted-by":"publisher","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","volume":"39","author":"S Ren","year":"2017","unstructured":"Ren, S., Girshick, R., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137\u20131149 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"59_CR22","doi-asserted-by":"crossref","unstructured":"Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: IEEE 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27\u201330 June 2016, pp. 761\u2013769 (2016)","DOI":"10.1109\/CVPR.2016.89"},{"key":"59_CR23","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Computer Science (2014)"},{"key":"59_CR24","unstructured":"Singh, B., Davis, L.S.: An analysis of scale invariance in object detection - snip"},{"key":"59_CR25","doi-asserted-by":"crossref","unstructured":"Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the International Conference on Computer Vision (ICCV) (2019)","DOI":"10.1109\/ICCV.2019.00972"},{"key":"59_CR26","doi-asserted-by":"crossref","unstructured":"Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module (2018)","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"59_CR27","doi-asserted-by":"crossref","unstructured":"Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: UnitBox: an advanced object detection network (2016)","DOI":"10.1145\/2964284.2967274"},{"key":"59_CR28","doi-asserted-by":"crossref","unstructured":"Zhao, Q., Sheng, T., Wang, Y., Tang, Z., Ling, H.: M2Det: a single-shot object detector based on multi-level feature pyramid network (2018)","DOI":"10.1609\/aaai.v33i01.33019259"},{"key":"59_CR29","doi-asserted-by":"crossref","unstructured":"Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection (2019)","DOI":"10.1109\/CVPR.2019.00093"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_59","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T10:26:19Z","timestamp":1619259979000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_59"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_59","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}