{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:46:48Z","timestamp":1726105608612},"publisher-location":"Cham","reference-count":18,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_58","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"507-515","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Pairwise-GAN: Pose-Based View Synthesis Through Pair-Wise Training"],"prefix":"10.1007","author":[{"given":"Xuyang","family":"Shen","sequence":"first","affiliation":[]},{"given":"Jo","family":"Plested","sequence":"additional","affiliation":[]},{"given":"Yue","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Tom","family":"Gedeon","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"58_CR1","doi-asserted-by":"crossref","unstructured":"Jackson, A.S., Bulat, A., Argyriou, V., Tzimiropoulos, G.: Large pose 3D face reconstruction from a single image via direct volumetric CNN regression. In: ICCV, pp. 1031\u20131039 (2017)","DOI":"10.1109\/ICCV.2017.117"},{"key":"58_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"557","DOI":"10.1007\/978-3-030-01264-9_33","volume-title":"Computer Vision \u2013 ECCV 2018","author":"Y Feng","year":"2018","unstructured":"Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3D face reconstruction and dense alignment with position map regression network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision \u2013 ECCV 2018. LNCS, vol. 11218, pp. 557\u2013574. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01264-9_33"},{"key":"58_CR3","doi-asserted-by":"crossref","unstructured":"Kan, M., Shan, S., Chang, H., Chen, X.: Stacked progressive auto-encoders (SPAE) for face recognition across poses. In: CVPR, pp. 1883\u20131890 (2014)","DOI":"10.1109\/CVPR.2014.243"},{"key":"58_CR4","doi-asserted-by":"crossref","unstructured":"Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontalization in unconstrained images. In: CVPR, pp. 4295\u20134304 (2015)","DOI":"10.1109\/CVPR.2015.7299058"},{"key":"58_CR5","doi-asserted-by":"crossref","unstructured":"Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In: ICCV, pp. 2439\u20132448 (2017)","DOI":"10.1109\/ICCV.2017.267"},{"key":"58_CR6","doi-asserted-by":"crossref","unstructured":"Tian, Y., Peng, X., Zhao, L., Zhang, S., Metaxas, D.N.: CR-GAN: learning complete representations for multi-view generation. arXiv preprint arXiv:1806.11191 (2018)","DOI":"10.24963\/ijcai.2018\/131"},{"key":"58_CR7","doi-asserted-by":"publisher","first-page":"807","DOI":"10.3390\/electronics8070807","volume":"8","author":"W Zhuang","year":"2019","unstructured":"Zhuang, W., Chen, L., Hong, C., Liang, Y., Wu, K.: FT-GAN: face transformation with key points alignment for pose-invariant face recognition. Electronics 8, 807 (2019)","journal-title":"Electronics"},{"key":"58_CR8","doi-asserted-by":"crossref","unstructured":"Yao, Y., Zheng, L., Yang, X., Naphade, M., Gedeon, T.: Simulating content consistent vehicle datasets with attribute descent. In: ECCV (2020)","DOI":"10.1007\/978-3-030-58539-6_46"},{"key":"58_CR9","doi-asserted-by":"crossref","unstructured":"Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR, pp. 4401\u20134410 (2019)","DOI":"10.1109\/CVPR.2019.00453"},{"key":"58_CR10","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, pp. 2672\u20132680 (2014)"},{"key":"58_CR11","unstructured":"Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440 (2015)"},{"key":"58_CR12","doi-asserted-by":"crossref","unstructured":"Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223\u20132232 (2017)","DOI":"10.1109\/ICCV.2017.244"},{"key":"58_CR13","unstructured":"Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: ICML, pp. 1989\u20131998 (2018)"},{"key":"58_CR14","doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125\u20131134 (2017)","DOI":"10.1109\/CVPR.2017.632"},{"key":"58_CR15","unstructured":"Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)"},{"key":"58_CR16","unstructured":"Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NeurIPS, pp. 469\u2013477 (2016)"},{"key":"58_CR17","doi-asserted-by":"crossref","unstructured":"Anoosheh, A., Agustsson, E., Timofte, R., Van Gool, L.: ComboGAN: unrestrained scalability for image domain translation. In: CVPR Workshops, pp. 783\u2013790 (2018)","DOI":"10.1109\/CVPRW.2018.00122"},{"key":"58_CR18","doi-asserted-by":"crossref","unstructured":"Yao, Y., Plested, J., Gedeon, T.: Information-preserving feature filter for short-term EEG signals. Neurocomputing (2020)","DOI":"10.1016\/j.neucom.2019.11.106"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_58","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T03:16:58Z","timestamp":1619234218000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_58"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_58","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}