{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T09:15:58Z","timestamp":1726218958812},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_52","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"450-459","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["MobileHand: Real-Time 3D Hand Shape and Pose Estimation from Color Image"],"prefix":"10.1007","author":[{"given":"Guan Ming","family":"Lim","sequence":"first","affiliation":[]},{"given":"Prayook","family":"Jatesiktat","sequence":"additional","affiliation":[]},{"given":"Wei Tech","family":"Ang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"doi-asserted-by":"crossref","unstructured":"Baek, S., Kim, K.I., Kim, T.: Pushing the envelope for RGB-based dense 3D hand pose estimation via neural rendering. In: CVPR, pp. 1067\u20131076 (2019)","key":"52_CR1","DOI":"10.1109\/CVPR.2019.00116"},{"unstructured":"Bazarevsky, V., Zhang, F.: On-device, real-time hand tracking with mediapipe. Google AI Blog, August 2019","key":"52_CR2"},{"doi-asserted-by":"crossref","unstructured":"Boukhayma, A., de Bem, R., Torr, P.H.S.: 3D hand shape and pose from images in the wild. In: CVPR, pp. 10835\u201310844 (2019)","key":"52_CR3","DOI":"10.1109\/CVPR.2019.01110"},{"key":"52_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"678","DOI":"10.1007\/978-3-030-01231-1_41","volume-title":"Computer Vision \u2013 ECCV 2018","author":"Y Cai","year":"2018","unstructured":"Cai, Y., Ge, L., Cai, J., Yuan, J.: Weakly-supervised 3D hand pose estimation from monocular RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 678\u2013694. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01231-1_41"},{"doi-asserted-by":"crossref","unstructured":"Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with iterative error feedback. In: CVPR, pp. 4733\u20134742 (2016)","key":"52_CR5","DOI":"10.1109\/CVPR.2016.512"},{"doi-asserted-by":"crossref","unstructured":"Ge, L., et al.: 3D hand shape and pose estimation from a single RGB image. In: CVPR, pp. 10825\u201310834 (2019)","key":"52_CR6","DOI":"10.1109\/CVPR.2019.01109"},{"doi-asserted-by":"crossref","unstructured":"Gouidis, F., Panteleris, P., Oikonomidis, I., Argyros, A.A.: Accurate hand keypoint localization on mobile devices. In: MVA, pp. 1\u20136 (2019)","key":"52_CR7","DOI":"10.23919\/MVA.2019.8758059"},{"issue":"1","key":"52_CR8","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1007\/BF02291478","volume":"40","author":"J Gower","year":"1975","unstructured":"Gower, J.: Generalized procrustes analysis. Psychometrika 40(1), 33\u201351 (1975)","journal-title":"Psychometrika"},{"doi-asserted-by":"crossref","unstructured":"Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: HOnnotate: a method for 3D annotation of hand and object poses. In: CVPR, pp. 3193\u20133203 (2020)","key":"52_CR9","DOI":"10.1109\/CVPR42600.2020.00326"},{"doi-asserted-by":"crossref","unstructured":"Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: CVPR, pp. 11799\u201311808 (2019)","key":"52_CR10","DOI":"10.1109\/CVPR.2019.01208"},{"doi-asserted-by":"crossref","unstructured":"Howard, A., et al.: Searching for mobilenetv3. In: ICCV, pp. 1314\u20131324 (2019)","key":"52_CR11","DOI":"10.1109\/ICCV.2019.00140"},{"key":"52_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1007\/978-3-030-01252-6_8","volume-title":"Computer Vision \u2013 ECCV 2018","author":"U Iqbal","year":"2018","unstructured":"Iqbal, U., Molchanov, P., Breuel, T., Gall, J., Kautz, J.: Hand pose estimation via latent 2.5D heatmap regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 125\u2013143. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01252-6_8"},{"doi-asserted-by":"crossref","unstructured":"Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR, pp. 7122\u20137131 (2018)","key":"52_CR13","DOI":"10.1109\/CVPR.2018.00744"},{"doi-asserted-by":"crossref","unstructured":"Kulon, D., G\u00fcler, R.A., Kokkinos, I., Bronstein, M., Zafeiriou, S.: Weakly-supervised mesh-convolutional hand reconstruction in the wild. In: CVPR (2020)","key":"52_CR14","DOI":"10.1109\/CVPR42600.2020.00504"},{"doi-asserted-by":"crossref","unstructured":"Lim, G.M., Jatesiktat, P., Kuah, C.W.K., Ang, W.T.: Camera-based hand tracking using a mirror-based multi-view setup. In: EMBC, pp. 5789\u20135793 (2020)","key":"52_CR15","DOI":"10.1109\/EMBC44109.2020.9176728"},{"doi-asserted-by":"crossref","unstructured":"Mueller, F., et al.: Ganerated hands for real-time 3D hand tracking from monocular RGB. In: CVPR, pp. 49\u201359 (2018)","key":"52_CR16","DOI":"10.1109\/CVPR.2018.00013"},{"doi-asserted-by":"crossref","unstructured":"Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM TOG 36(6) (2017)","key":"52_CR17","DOI":"10.1145\/3130800.3130883"},{"doi-asserted-by":"crossref","unstructured":"Spurr, A., Song, J., Park, S., Hilliges, O.: Cross-modal deep variational hand pose estimation. In: CVPR, pp. 89\u201398 (2018)","key":"52_CR18","DOI":"10.1109\/CVPR.2018.00017"},{"doi-asserted-by":"crossref","unstructured":"Zhang, J., Jiao, J., Chen, M., Qu, L., Xu, X., Yang, Q.: A hand pose tracking benchmark from stereo matching. In: ICIP, pp. 982\u2013986 (2017)","key":"52_CR19","DOI":"10.1109\/ICIP.2017.8296428"},{"doi-asserted-by":"crossref","unstructured":"Zhang, X., Li, Q., Mo, H., Zhang, W., Zheng, W.: End-to-end hand mesh recovery from a monocular RGB image. In: ICCV, pp. 2354\u20132364 (2019)","key":"52_CR20","DOI":"10.1109\/ICCV.2019.00244"},{"unstructured":"Zhou, X., Wan, Q., Zhang, W., Xue, X., Wei, Y.: Model-based deep hand pose estimation. In: IJCAI, pp. 2421\u20132427 (2016)","key":"52_CR21"},{"doi-asserted-by":"crossref","unstructured":"Zhou, Y., Habermann, M., Xu, W., Habibie, I., Theobalt, C., Xu, F.: Monocular real-time hand shape and motion capture using multi-modal data. In: CVPR (2020)","key":"52_CR22","DOI":"10.1109\/CVPR42600.2020.00539"},{"doi-asserted-by":"crossref","unstructured":"Zimmermann, C., Ceylan, D., Yang, J., Russell, B., Argus, M.J., Brox, T.: Freihand: a dataset for markerless capture of hand pose and shape from single RGB images. In: ICCV, pp. 813\u2013822 (2019)","key":"52_CR23","DOI":"10.1109\/ICCV.2019.00090"},{"doi-asserted-by":"crossref","unstructured":"Zimmermann, C., Brox, T.: Learning to estimate 3D hand pose from single RGB images. In: ICCV, pp. 4913\u20134921 (2017)","key":"52_CR24","DOI":"10.1109\/ICCV.2017.525"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_52","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T03:17:58Z","timestamp":1619234278000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_52"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_52","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}