{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:46:28Z","timestamp":1726105588728},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_50","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"434-441","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Light Textspotter: An Extreme Light Scene Text Spotter"],"prefix":"10.1007","author":[{"given":"Jiazhi","family":"Guan","sequence":"first","affiliation":[]},{"given":"Anna","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"50_CR1","unstructured":"Liao, M., Lyu, P., He, M., et al.: Mask textspotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. IEEE Trans. Pattern Anal. Mach. Intell. (2019)"},{"key":"50_CR2","doi-asserted-by":"crossref","unstructured":"Zhang, X., Zhou, X., Lin, M., et al.: ShuffleNET: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848\u20136856 (2018)","DOI":"10.1109\/CVPR.2018.00716"},{"key":"50_CR3","doi-asserted-by":"crossref","unstructured":"Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: Proceedings ICDAR, pp. 1156\u20131160 (2015)","DOI":"10.1109\/ICDAR.2015.7333942"},{"key":"50_CR4","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. arXiv preprint arXiv:1801.04381 (2018)","DOI":"10.1109\/CVPR.2018.00474"},{"key":"50_CR5","doi-asserted-by":"crossref","unstructured":"Li, H., Wang, P., Shen, C.: Towards end-to-end text spotting with convolutional recurrent neural networks. In: Proceedings of IEEE International Conference on Computer Vision, pp. 5238\u20135246 (2017)","DOI":"10.1109\/ICCV.2017.560"},{"key":"50_CR6","doi-asserted-by":"crossref","unstructured":"Ch\u2019ng, C.K., Chan, C.S.: Total-text: a comprehensive dataset for scene text detection and recognition. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 935\u2013942 (2017)","DOI":"10.1109\/ICDAR.2017.157"},{"key":"50_CR7","doi-asserted-by":"crossref","unstructured":"Busta, M, Neumann, L,, Matas, J.: Deep textspotter: an end-to-end trainable scene text localization and recognition framework. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2204\u20132212 (2017)","DOI":"10.1109\/ICCV.2017.242"},{"key":"50_CR8","unstructured":"Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91\u201399 (2015)"},{"key":"50_CR9","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Doll\u00e1r, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117\u20132125 (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"50_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1007\/978-3-030-01264-9_5","volume-title":"Computer Vision \u2013 ECCV 2018","author":"P Lyu","year":"2018","unstructured":"Lyu, P., Liao, M., Yao, C., Wu, W., Bai, X.: Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision \u2013 ECCV 2018. LNCS, vol. 11218, pp. 71\u201388. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01264-9_5"},{"key":"50_CR11","unstructured":"Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)"},{"key":"50_CR12","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)"},{"key":"50_CR13","doi-asserted-by":"crossref","unstructured":"Gupta, A,, Vedaldi, A,, Zisserman, A.: Synthetic data for text localisation in natural images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2315\u20132324 (2016)","DOI":"10.1109\/CVPR.2016.254"},{"key":"50_CR14","doi-asserted-by":"crossref","unstructured":"Zhang, Z., Zhang, C., Shen, W., Yao, C., Liu, W., Bai, X.: Multi-oriented text detection with fully convolutional networks. In: Proceedings of CVPR, pp. 4159\u20134167 (2016)","DOI":"10.1109\/CVPR.2016.451"},{"key":"50_CR15","doi-asserted-by":"crossref","unstructured":"Shi, B., Bai, X., Belongie, S.J.: Detecting oriented text in natural images by linking segments. In: Proceedings of CVPR, pp. 3482\u20133490 (2017)","DOI":"10.1109\/CVPR.2017.371"},{"key":"50_CR16","doi-asserted-by":"crossref","unstructured":"Zhou, X., et al.: EAST: an efficient and accurate scene text detector. In: Proceedings of CVPR, pp. 2642\u20132651 (2017)","DOI":"10.1109\/CVPR.2017.283"},{"key":"50_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1007\/978-3-030-01216-8_2","volume-title":"Computer Vision \u2013 ECCV 2018","author":"S Long","year":"2018","unstructured":"Long, S., Ruan, J., Zhang, W., He, X., Wu, W., Yao, C.: TextSnake: a flexible representation for detecting text of arbitrary shapes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 19\u201335. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01216-8_2"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_50","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T10:22:35Z","timestamp":1619259755000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_50"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_50","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}