{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:46:32Z","timestamp":1726105592372},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_48","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"418-425","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Feature Redirection Network for Few-Shot Classification"],"prefix":"10.1007","author":[{"given":"Yanan","family":"Wang","sequence":"first","affiliation":[]},{"given":"Guoqiang","family":"Zhong","sequence":"additional","affiliation":[]},{"given":"Yuxu","family":"Mao","sequence":"additional","affiliation":[]},{"given":"Kaizhu","family":"Huang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"48_CR1","doi-asserted-by":"crossref","unstructured":"Chen, Z., Fu, Y., Wang, Y.X., Ma, L., Liu, W., Hebert, M.: Image deformation meta-networks for one-shot learning. In: CVPR, pp. 8672\u20138681 (2019)","DOI":"10.1109\/CVPR.2019.00888"},{"key":"48_CR2","unstructured":"Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML, pp. 1126\u20131135 (2017)"},{"key":"48_CR3","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"48_CR4","unstructured":"Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. In: ICLR (2017)"},{"key":"48_CR5","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"48_CR6","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS, pp. 1097\u20131105 (2012)"},{"key":"48_CR7","unstructured":"Liu, Y., et al.: Learning to propagate labels: transductive propagation network for few-shot learning. In: ICLR (2019)"},{"key":"48_CR8","unstructured":"Munkhdalai, T., Yuan, X., Mehri, S., Trischler, A.: Rapid adaptation with conditionally shifted neurons. In: ICML (2017)"},{"key":"48_CR9","unstructured":"Oreshkin, B., L\u00f3pez, P.R., Lacoste, A.: Tadam: task dependent adaptive metric for improved few-shot learning. In: NeurIPS, pp. 721\u2013731 (2018)"},{"key":"48_CR10","doi-asserted-by":"crossref","unstructured":"Ravichandran, A., Bhotika, R., Soatto, S.: Few-shot learning with embedded class models and shot-free meta training. In: CVPR, pp. 331\u2013339 (2019)","DOI":"10.1109\/ICCV.2019.00042"},{"key":"48_CR11","unstructured":"Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: ICLR (2018)"},{"key":"48_CR12","unstructured":"Rusu, A.A., et al.: Meta-learning with latent embedding optimization. In: ICLR (2019)"},{"key":"48_CR13","doi-asserted-by":"crossref","unstructured":"Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: CVPR, pp. 403\u2013412 (2019)","DOI":"10.1109\/CVPR.2019.00049"},{"key":"48_CR14","doi-asserted-by":"crossref","unstructured":"Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: CVPR, pp. 1199\u20131208 (2018)","DOI":"10.1109\/CVPR.2018.00131"},{"key":"48_CR15","unstructured":"Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NeurIPS, pp. 3630\u20133638 (2016)"},{"key":"48_CR16","unstructured":"Munkhdalai, T., Yu, H.: Meta networks. In: ICML, pp. 2554\u20132563 (2017)"},{"key":"48_CR17","doi-asserted-by":"crossref","unstructured":"Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: CVPR, pp. 4367\u20134375 (2018)","DOI":"10.1109\/CVPR.2018.00459"},{"key":"48_CR18","doi-asserted-by":"crossref","unstructured":"Yan, S., Zhang, S., He, X., et al.: A dual attention network with semantic embedding for few-shot learning. In: AAAI, pp. 9079\u20139086 (2019)","DOI":"10.1609\/aaai.v33i01.33019079"},{"key":"48_CR19","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-06073-2","volume-title":"Deep Learning: Fundamentals, Theory, and Applications","author":"K Huang","year":"2019","unstructured":"Huang, K., Hussain, A., Wang, Q., Zhang, R.: Deep Learning: Fundamentals, Theory, and Applications. Springer, Heidelberg (2019). https:\/\/doi.org\/10.1007\/978-3-030-06073-2. ISBN 978-3-030-06072-5"},{"key":"48_CR20","doi-asserted-by":"crossref","unstructured":"Yang, G., Huang, K., Zhang, R., Goulermas, J., Hussain, A.: Inductive generalized zero-shot learning with adversarial relation network. In: ECML (2020)","DOI":"10.1007\/978-3-030-67661-2_43"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_48","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T10:23:20Z","timestamp":1619259800000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_48"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_48","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}