{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:46:16Z","timestamp":1726105576980},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_46","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"402-409","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["End-to-end Saliency-Guided Deep Image Retrieval"],"prefix":"10.1007","author":[{"given":"Jinyu","family":"Ma","sequence":"first","affiliation":[]},{"given":"Xiaodong","family":"Gu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"46_CR1","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1016\/j.jvcir.2017.11.021","volume":"50","author":"C Bai","year":"2018","unstructured":"Bai, C., Chen, J., Huang, L., Kpalma, K., Chen, S.: Saliency-based multi-feature modeling for semantic image retrieval. J. Vis. Commun. Image Represent. 50, 199\u2013204 (2018). https:\/\/doi.org\/10.1016\/j.jvcir.2017.11.021","journal-title":"J. Vis. Commun. Image Represent."},{"issue":"2","key":"46_CR2","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1007\/s11263-017-1016-8","volume":"124","author":"A Gordo","year":"2017","unstructured":"Gordo, A., Almazan, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for image retrieval. Int. J. Comput. Vis. 124(2), 237\u2013254 (2017). https:\/\/doi.org\/10.1007\/s11263-017-1016-8","journal-title":"Int. J. Comput. Vis."},{"key":"46_CR3","doi-asserted-by":"crossref","unstructured":"Han, K., Guo, J., Zhang, C., Zhu, M.: Attribute-aware attention model for fine-grained representation learning. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 2040\u20132048 (2018)","DOI":"10.1145\/3240508.3240550"},{"key":"46_CR4","doi-asserted-by":"crossref","unstructured":"Hoang, T., Do, T.T., Le Tan, D.K., Cheung, N.M.: Selective deep convolutional features for image retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1600\u20131608 (2017)","DOI":"10.1145\/3123266.3123417"},{"issue":"9","key":"46_CR5","doi-asserted-by":"publisher","first-page":"1704","DOI":"10.1109\/TPAMI.2011.235","volume":"34","author":"H Jegou","year":"2012","unstructured":"Jegou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1704\u20131716 (2012). https:\/\/doi.org\/10.1109\/TPAMI.2011.235","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"46_CR6","doi-asserted-by":"crossref","unstructured":"J\u00e9gou, H., Douze, M., Schmid, C., P\u00e9rez, P.: Aggregating local descriptors into a compact image representation. In: CVPR 2010\u201323rd IEEE Conference on Computer Vision & Pattern Recognition, pp. 3304\u20133311. IEEE Computer Society (2010)","DOI":"10.1109\/CVPR.2010.5540039"},{"key":"46_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"685","DOI":"10.1007\/978-3-319-46604-0_48","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"Y Kalantidis","year":"2016","unstructured":"Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 685\u2013701. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46604-0_48"},{"key":"46_CR8","doi-asserted-by":"crossref","unstructured":"Liu, J.J., Hou, Q., Cheng, M.M., Feng, J., Jiang, J.: A simple pooling-based design for real-time salient object detection. arXiv:1904.09569 [cs] (2019)","DOI":"10.1109\/CVPR.2019.00404"},{"key":"46_CR9","doi-asserted-by":"publisher","first-page":"252","DOI":"10.1016\/j.neucom.2020.05.090","volume":"412","author":"J Ma","year":"2020","unstructured":"Ma, J., Gu, X.: Scene image retrieval with Siamese spatial attention pooling. Neurocomputing 412, 252\u2013261 (2020)","journal-title":"Neurocomputing"},{"key":"46_CR10","doi-asserted-by":"publisher","unstructured":"Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with attentive deep local features. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3476\u20133485. IEEE, Venice (2017). https:\/\/doi.org\/10.1109\/ICCV.2017.374","DOI":"10.1109\/ICCV.2017.374"},{"key":"46_CR11","doi-asserted-by":"crossref","unstructured":"Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004\u20134012 (2016)","DOI":"10.1109\/CVPR.2016.434"},{"key":"46_CR12","doi-asserted-by":"publisher","unstructured":"Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20138. IEEE, Minneapolis (2007). https:\/\/doi.org\/10.1109\/CVPR.2007.383172","DOI":"10.1109\/CVPR.2007.383172"},{"key":"46_CR13","doi-asserted-by":"publisher","first-page":"1655","DOI":"10.1109\/TPAMI.2018.2846566","volume":"7","author":"F Radenovic","year":"2018","unstructured":"Radenovic, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 7, 1655\u20131668 (2018). https:\/\/doi.org\/10.1109\/TPAMI.2018.2846566","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"46_CR14","doi-asserted-by":"publisher","first-page":"251","DOI":"10.3169\/mta.4.251","volume":"4","author":"AS Razavian","year":"2016","unstructured":"Razavian, A.S., Sullivan, J., Carlsson, S., Maki, A.: Visual instance retrieval with deep convolutional networks. ITE Trans. Media Technol. Appl. 4(3), 251\u2013258 (2016). https:\/\/doi.org\/10.3169\/mta.4.251","journal-title":"ITE Trans. Media Technol. Appl."},{"key":"46_CR15","unstructured":"Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Advances in Neural Information Processing Systems, pp. 1857\u20131865 (2016)"},{"key":"46_CR16","unstructured":"Tolias, G., Sicre, R., J\u00e9gou, H.: Particular object retrieval with integral max-pooling of CNN activations. arXiv:1511.05879 [cs] (2015)"},{"key":"46_CR17","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1016\/j.patrec.2018.08.010","volume":"130","author":"H Wang","year":"2020","unstructured":"Wang, H., Li, Z., Li, Y., Gupta, B., Choi, C.: Visual saliency guided complex image retrieval. Pattern Recogn. Lett. 130, 64\u201372 (2020). https:\/\/doi.org\/10.1016\/j.patrec.2018.08.010","journal-title":"Pattern Recogn. Lett."},{"issue":"9","key":"46_CR18","doi-asserted-by":"publisher","first-page":"4580","DOI":"10.1109\/TIP.2019.2913513","volume":"28","author":"S Wei","year":"2019","unstructured":"Wei, S., Liao, L., Li, J., Zheng, Q., Yang, F., Zhao, Y.: Saliency inside: learning attentive CNNs for content-based image retrieval. IEEE Trans. Image Process. 28(9), 4580\u20134593 (2019)","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"46_CR19","doi-asserted-by":"publisher","first-page":"2868","DOI":"10.1109\/TIP.2017.2688133","volume":"26","author":"XS Wei","year":"2017","unstructured":"Wei, X.S., Luo, J.H., Wu, J., Zhou, Z.H.: Selective convolutional descriptor aggregation for fine-grained image retrieval. IEEE Trans. Image Process. 26(6), 2868\u20132881 (2017)","journal-title":"IEEE Trans. Image Process."},{"key":"46_CR20","doi-asserted-by":"crossref","unstructured":"Wengert, C., Douze, M., J\u00e9gou, H.: Bag-of-colors for improved image search. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 1437\u20131440 (2011)","DOI":"10.1145\/2072298.2072034"},{"key":"46_CR21","doi-asserted-by":"crossref","unstructured":"Zheng, X., Ji, R., Sun, X., Wu, Y., Huang, F., Yang, Y.: Centralized ranking loss with weakly supervised localization for fine-grained object retrieval. In: IJCAI, pp. 1226\u20131233 (2018)","DOI":"10.24963\/ijcai.2018\/171"},{"key":"46_CR22","doi-asserted-by":"crossref","unstructured":"Zheng, X., Ji, R., Sun, X., Zhang, B., Wu, Y., Huang, F.: Towards optimal fine grained retrieval via decorrelated centralized loss with normalize-scale layer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9291\u20139298 (2019)","DOI":"10.1609\/aaai.v33i01.33019291"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_46","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T10:24:28Z","timestamp":1619259868000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_46"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_46","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}