{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:46:20Z","timestamp":1726105580823},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_44","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"386-393","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Efficient Segmentation Pyramid Network"],"prefix":"10.1007","author":[{"given":"Tanmay","family":"Singha","sequence":"first","affiliation":[]},{"given":"Duc-Son","family":"Pham","sequence":"additional","affiliation":[]},{"given":"Aneesh","family":"Krishna","sequence":"additional","affiliation":[]},{"given":"Joel","family":"Dunstan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"issue":"12","key":"44_CR1","doi-asserted-by":"publisher","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","volume":"39","author":"V Badrinarayanan","year":"2017","unstructured":"Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. TPAMI 39(12), 2481\u20132495 (2017)","journal-title":"TPAMI"},{"issue":"4","key":"44_CR2","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"LC Chen","year":"2017","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. TPAMI 40(4), 834\u2013848 (2017)","journal-title":"TPAMI"},{"doi-asserted-by":"crossref","unstructured":"Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of ICCV, September 2018","key":"44_CR3","DOI":"10.1007\/978-3-030-01234-2_49"},{"doi-asserted-by":"crossref","unstructured":"Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of CVPR, June 2016","key":"44_CR4","DOI":"10.1109\/CVPR.2016.350"},{"issue":"9","key":"44_CR5","doi-asserted-by":"publisher","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","volume":"37","author":"K He","year":"2015","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. TPAMI 37(9), 1904\u20131916 (2015)","journal-title":"TPAMI"},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, June 2016","key":"44_CR6","DOI":"10.1109\/CVPR.2016.90"},{"unstructured":"Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)","key":"44_CR7"},{"doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of CVPR, June 2018","key":"44_CR8","DOI":"10.1109\/CVPR.2018.00745"},{"unstructured":"Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segnet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)","key":"44_CR9"},{"unstructured":"Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)","key":"44_CR10"},{"unstructured":"Poudel, R.P., Bonde, U., Liwicki, S., Zach, C.: Contextnet: exploring context and detail for semantic segmentation in real-time. arXiv preprint arXiv:1805.04554 (2018)","key":"44_CR11"},{"unstructured":"Poudel, R.P., Liwicki, S., Cipolla, R.: Fast-scnn: fast semantic segmentation network. arXiv preprint arXiv:1902.04502 (2019)","key":"44_CR12"},{"key":"44_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of CVPR (June 2018)","key":"44_CR14","DOI":"10.1109\/CVPR.2018.00474"},{"key":"44_CR15","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"550","DOI":"10.1007\/978-3-030-36802-9_59","volume-title":"Neural Information Processing","author":"Y Shang","year":"2019","unstructured":"Shang, Y., Zhong, S., Gong, S., Zhou, L., Ying, W.: DXNet: an encoder-decoder architecture with XSPP for semantic image segmentation in street scenes. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1143, pp. 550\u2013557. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-36802-9_59"},{"issue":"4","key":"44_CR16","doi-asserted-by":"publisher","first-page":"640","DOI":"10.1109\/TPAMI.2016.2572683","volume":"39","author":"E Shelhamer","year":"2017","unstructured":"Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. TPAMI 39(4), 640\u2013651 (2017)","journal-title":"TPAMI"},{"unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)","key":"44_CR17"},{"unstructured":"Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)","key":"44_CR18"},{"unstructured":"Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: generalizing residual architectures. arXiv preprint arXiv:1603.08029 (2016)","key":"44_CR19"},{"key":"44_CR20","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1007\/978-3-030-36808-1_29","volume-title":"Neural Information Processing","author":"M Yang","year":"2019","unstructured":"Yang, M., Shi, Y.: DSMRSeg: dual-stage feature pyramid and multi-range context aggregation for real-time semantic Segmentation. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1142, pp. 265\u2013273. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-36808-1_29"},{"doi-asserted-by":"crossref","unstructured":"Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. In: Proceedings of ECCV, September 2018","key":"44_CR21","DOI":"10.1007\/978-3-030-01219-9_25"},{"doi-asserted-by":"crossref","unstructured":"Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of CVPR, July 2017","key":"44_CR22","DOI":"10.1109\/CVPR.2017.660"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_44","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T03:18:21Z","timestamp":1619234301000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_44"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_44","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}