{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:46:09Z","timestamp":1726105569714},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_42","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"369-376","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Dual Convolutional Neural Networks for Hyperspectral Satellite Images Classification (DCNN-HSI)"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8596-4797","authenticated-orcid":false,"given":"Maissa","family":"Hamouda","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2952-3967","authenticated-orcid":false,"given":"Med Salim","family":"Bouhlel","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"42_CR1","doi-asserted-by":"crossref","unstructured":"Wang, J., Gao, F., Dong, J., Du, Q.: Adaptive DropBlock-enhanced generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sensing 1\u201314 (2020)","DOI":"10.1109\/TGRS.2020.3015843"},{"issue":"2","key":"42_CR2","doi-asserted-by":"publisher","first-page":"392","DOI":"10.1049\/iet-ipr.2018.5063","volume":"13","author":"M Hamouda","year":"2018","unstructured":"Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Hyperspectral imaging classification based on convolutional neural networks by adaptive sizes of windows and filters. IET Image Process. 13(2), 392\u2013398 (2018)","journal-title":"IET Image Process."},{"key":"42_CR3","doi-asserted-by":"crossref","unstructured":"Chin, T.J., Bagchi, S., Eriksson, A., Van Schaik, A.: Star tracking using an event camera. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, June 2019","DOI":"10.1109\/CVPRW.2019.00208"},{"key":"42_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"310","DOI":"10.1007\/978-3-319-94211-7_34","volume-title":"Image and Signal Processing","author":"M Hamouda","year":"2018","unstructured":"Hamouda, M., Saheb Ettabaa, K., Bouhlel, M.S.: Adaptive batch extraction for hyperspectral image classification based on convolutional neural network. In: Mansouri, A., El Moataz, A., Nouboud, F., Mammass, D. (eds.) ICISP 2018. LNCS, vol. 10884, pp. 310\u2013318. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-94211-7_34"},{"issue":"4","key":"42_CR5","first-page":"74","volume":"16","author":"A Haidar","year":"2019","unstructured":"Haidar, A., Verma, B.K., Haidar, R.: A swarm based optimization of the xgboost parameters. Aust. J. Intell. Inf. Process. Syst. 16(4), 74\u201381 (2019)","journal-title":"Aust. J. Intell. Inf. Process. Syst."},{"key":"42_CR6","doi-asserted-by":"crossref","unstructured":"Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Modified convolutional neural network based on adaptive patch extraction for hyperspectral image classification. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1\u20137. IEEE (2018)","DOI":"10.1109\/FUZZ-IEEE.2018.8491647"},{"key":"42_CR7","doi-asserted-by":"crossref","unstructured":"Feng, J., et al.: Attention multibranch convolutional neural network for hyperspectral image classification based on adaptive region search. IEEE Trans. Geosci. Remote Sensing 1\u201317 (2020)","DOI":"10.1109\/TGRS.2020.3011943"},{"key":"42_CR8","doi-asserted-by":"crossref","unstructured":"Shen, Y., et al.: Efficient deep learning of nonlocal features for hyperspectral image classification. IEEE Trans. Geosci. Remote Sensing 1\u201315 (2020)","DOI":"10.1109\/TGRS.2020.3014286"},{"issue":"11","key":"42_CR9","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278\u20132324 (1998)","journal-title":"Proc. IEEE"},{"key":"42_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"818","DOI":"10.1007\/978-3-319-10590-1_53","volume-title":"Computer Vision \u2013 ECCV 2014","author":"MD Zeiler","year":"2014","unstructured":"Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818\u2013833. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10590-1_53"},{"key":"42_CR11","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)"},{"key":"42_CR12","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015","DOI":"10.1109\/CVPR.2015.7298594"},{"issue":"10","key":"42_CR13","doi-asserted-by":"publisher","first-page":"1999","DOI":"10.1049\/iet-ipr.2019.1282","volume":"14","author":"M Hamouda","year":"2020","unstructured":"Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Smart feature extraction and classification of hyperspectral images based on convolutional neural networks. IET Image Process. 14(10), 1999\u20132005 (2020)","journal-title":"IET Image Process."},{"key":"42_CR14","doi-asserted-by":"crossref","unstructured":"Hang, R., Li, Z., Liu, Q., Ghamisi, P., Bhattacharyya, S.S.: Hyperspectral image classification with attention aided CNNs. arXiv preprint arXiv:2005.11977 (2020)","DOI":"10.1109\/TGRS.2020.3007921"},{"issue":"04","key":"42_CR15","doi-asserted-by":"publisher","first-page":"1950019","DOI":"10.1142\/S0219467819500190","volume":"19","author":"M Hamouda","year":"2019","unstructured":"Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Framework for automatic selection of kernels based on convolutional neural networks and ckmeans clustering algorithm. Int. J. Image Graph. 19(04), 1950019 (2019)","journal-title":"Int. J. Image Graph."},{"key":"42_CR16","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1016\/j.neucom.2020.05.034","volume":"410","author":"J Fang","year":"2020","unstructured":"Fang, J., Wang, N., Cao, X.: Multidimensional relation learning for hyperspectral image classification. Neurocomputing 410, 211\u2013219 (2020)","journal-title":"Neurocomputing"},{"key":"42_CR17","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1016\/j.neucom.2020.04.138","volume":"407","author":"SG Azar","year":"2020","unstructured":"Azar, S.G., Meshgini, S., Rezaii, T.Y., Beheshti, S.: Hyperspectral image classification based on sparse modeling of spectral blocks. Neurocomputing 407, 12\u201323 (2020)","journal-title":"Neurocomputing"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_42","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T22:18:18Z","timestamp":1619302698000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_42"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_42","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}