{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:58:36Z","timestamp":1726106316434},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_4","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"32-40","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Prediction Model of Breast Cancer Based on mRMR Feature Selection"],"prefix":"10.1007","author":[{"given":"Junwen","family":"Di","sequence":"first","affiliation":[]},{"given":"Zhiguo","family":"Shi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"issue":"4","key":"4_CR1","doi-asserted-by":"publisher","first-page":"537","DOI":"10.1109\/72.298224","volume":"5","author":"R Battiti","year":"1994","unstructured":"Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5(4), 537\u2013550 (1994)","journal-title":"IEEE Trans. Neural Netw."},{"key":"4_CR2","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1016\/j.ins.2014.05.042","volume":"282","author":"V Bol\u00f3n-Canedo","year":"2014","unstructured":"Bol\u00f3n-Canedo, V., S\u00e1nchez-Maro\u00f1o, N., Alonso-Betanzos, A., Ben\u00edtez, J., Herrera, F.: A review of microarray datasets and applied feature selection methods. Inf. Sci. 282, 111\u2013135 (2014)","journal-title":"Inf. Sci."},{"unstructured":"Bol\u00f3n-Canedo, V., Seth, S., S\u00e1nchez-Maro\u00f1o, N., Alonso-Betanzos, A., Principe, J.C.: Statistical dependence measure for feature selection in microarray datasets. In: European Symposium on ESANN (2012)","key":"4_CR3"},{"issue":"1","key":"4_CR4","first-page":"321","volume":"16","author":"NV Chawla","year":"2011","unstructured":"Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321\u2013357 (2011)","journal-title":"J. Artif. Intell. Res."},{"issue":"1","key":"4_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1007730.1007733","volume":"6","author":"NV Chawla","year":"2004","unstructured":"Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. AM Sigkdd Explor. Newsl. 6(1), 1\u20136 (2004)","journal-title":"AM Sigkdd Explor. Newsl."},{"unstructured":"Chen, C., Breiman, L.: Using random forest to learn imbalanced data. University of California, Berkeley (2004)","key":"4_CR6"},{"key":"4_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ins.2019.01.041","volume":"483","author":"H Chen","year":"2019","unstructured":"Chen, H., Li, T., Fan, X., Luo, C.: Feature selection for imbalanced data based on neighborhood rough sets. Inf. Sci. 483, 1\u201320 (2019)","journal-title":"Inf. Sci."},{"issue":"6","key":"4_CR8","first-page":"1157","volume":"3","author":"I Guyon","year":"2003","unstructured":"Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(6), 1157\u20131182 (2003)","journal-title":"J. Mach. Learn. Res."},{"issue":"8","key":"4_CR9","doi-asserted-by":"publisher","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","volume":"27","author":"H Peng","year":"2005","unstructured":"Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226\u20131238 (2005)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"doi-asserted-by":"crossref","unstructured":"Li, A., Wang, R., Xu, L.: Shrink: a breast cancer risk assessment model based on medical social network. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 1189\u20131196. IEEE (2017)","key":"4_CR10","DOI":"10.1109\/ICDCS.2017.168"},{"issue":"5","key":"4_CR11","doi-asserted-by":"publisher","first-page":"509","DOI":"10.1016\/j.compbiomed.2010.03.005","volume":"40","author":"DC Li","year":"2010","unstructured":"Li, D.C., Liu, C.W., Hu, S.C.: A learning method for the class imbalance problem with medical data sets. Comput. Biol. Med. 40(5), 509\u2013518 (2010)","journal-title":"Comput. Biol. Med."},{"issue":"6","key":"4_CR12","first-page":"1","volume":"50","author":"J Li","year":"2016","unstructured":"Li, J., et al.: Feature selection: a data perspective. AM Comput. Surv. 50(6), 1\u201345 (2016)","journal-title":"AM Comput. Surv."},{"issue":"2","key":"4_CR13","doi-asserted-by":"publisher","first-page":"539","DOI":"10.1109\/TSMCB.2008.2007853","volume":"39","author":"XY Liu","year":"2009","unstructured":"Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. B 39(2), 539\u2013550 (2009)","journal-title":"IEEE Trans. Syst. Man Cybern. B"},{"issue":"15","key":"4_CR14","doi-asserted-by":"publisher","first-page":"6249","DOI":"10.1007\/s00500-018-3282-y","volume":"23","author":"MM Mafarja","year":"2018","unstructured":"Mafarja, M.M., Mirjalili, S.: Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection. Soft Comput. 23(15), 6249\u20136265 (2018). https:\/\/doi.org\/10.1007\/s00500-018-3282-y","journal-title":"Soft Comput."},{"key":"4_CR15","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1016\/j.ins.2014.07.015","volume":"286","author":"S Maldonado","year":"2014","unstructured":"Maldonado, S., Weber, R., Famili, F.: Feature selection for high-dimensional class-imbalanced data sets using support vector machines. Inf. Sci. 286, 228\u2013246 (2014)","journal-title":"Inf. Sci."},{"key":"4_CR16","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1016\/j.engappai.2016.10.008","volume":"57","author":"A Moayedikia","year":"2017","unstructured":"Moayedikia, A., Ong, K.L., Boo, Y.L., Yeoh, W.G., Jensen, R.: Feature selection for high dimensional imbalanced class data using harmony search. Eng. Appl. Artif. Intell. 57, 38\u201349 (2017)","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"1","key":"4_CR17","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1109\/TSMCA.2009.2029559","volume":"40","author":"C Seiffert","year":"2010","unstructured":"Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Rusboost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 40(1), 185\u2013197 (2010)","journal-title":"IEEE Trans. Syst. Man Cybern. A Syst. Hum."},{"key":"4_CR18","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1016\/j.jbi.2018.07.014","volume":"85","author":"RJ Urbanowicz","year":"2017","unstructured":"Urbanowicz, R.J., Melissa, M., La, C.W., Olson, R.S., Moore, J.H.: Relief-based feature selection: introduction and review. J. Biomed. Inform. 85, 189\u2013203 (2017)","journal-title":"J. Biomed. Inform."},{"issue":"10","key":"4_CR19","doi-asserted-by":"publisher","first-page":"1388","DOI":"10.1109\/TKDE.2009.187","volume":"22","author":"M Wasikowski","year":"2010","unstructured":"Wasikowski, M., Chen, X.W.: Combating the small sample class imbalance problem using feature selection. IEEE Trans. Knowl. Data Eng. 22(10), 1388\u20131400 (2010)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"04","key":"4_CR20","first-page":"673","volume":"34","author":"LI Yan-Xia","year":"2019","unstructured":"Yan-Xia, L.I., Yi, C., You-Qiang, H.U., Hong-Peng, Y.: Review of imbalanced data classification methods. Control Decis. 34(04), 673\u2013688 (2019)","journal-title":"Control Decis."},{"key":"4_CR21","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.neucom.2012.04.039","volume":"105","author":"L Yin","year":"2013","unstructured":"Yin, L., Ge, Y., Xiao, K., Wang, X., Quan, X.: Feature selection for high-dimensional imbalanced data. Neurocomput. 105, 3\u201311 (2013)","journal-title":"Neurocomput."},{"doi-asserted-by":"crossref","unstructured":"Zhang, C., Wang, G., Zhou, Y., Yao, L., Wang, X.: Feature selection for high dimensional imbalanced class data based on f-measure optimization. In: 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), pp. 278\u2013283. IEEE(2018)","key":"4_CR22","DOI":"10.1109\/SPAC.2017.8304290"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T03:12:27Z","timestamp":1619233947000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_4","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}