{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:46:07Z","timestamp":1726105567909},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_34","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"302-311","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Adaptive Feature Enhancement Network for Semantic Segmentation"],"prefix":"10.1007","author":[{"given":"Kuntao","family":"Cao","sequence":"first","affiliation":[]},{"given":"Xi","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Shao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"34_CR1","unstructured":"Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR 2015 (2015)"},{"issue":"4","key":"34_CR2","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"L Chen","year":"2018","unstructured":"Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834\u2013848 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"34_CR3","unstructured":"Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR abs\/1706.05587 (2017)"},{"key":"34_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"833","DOI":"10.1007\/978-3-030-01234-2_49","volume-title":"Computer Vision \u2013 ECCV 2018","author":"L-C Chen","year":"2018","unstructured":"Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833\u2013851. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_49"},{"key":"34_CR5","first-page":"3213","volume":"2016","author":"M Cordts","year":"2016","unstructured":"Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. CVPR 2016, 3213\u20133223 (2016)","journal-title":"CVPR"},{"key":"34_CR6","first-page":"2393","volume":"2018","author":"H Ding","year":"2018","unstructured":"Ding, H., Jiang, X., Shuai, B., Liu, A.Q., Wang, G.: Context contrasted feature and gated multi-scale aggregation for scene segmentation. CVPR 2018, 2393\u20132402 (2018)","journal-title":"CVPR"},{"issue":"2","key":"34_CR7","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","volume":"88","author":"M Everingham","year":"2010","unstructured":"Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303\u2013338 (2010)","journal-title":"Int. J. Comput. Vis."},{"key":"34_CR8","first-page":"991","volume":"2011","author":"B Hariharan","year":"2011","unstructured":"Hariharan, B., Arbelaez, P., Bourdev, L.D., Maji, S., Malik, J.: Semantic contours from inverse detectors. ICCV 2011, 991\u2013998 (2011)","journal-title":"ICCV"},{"key":"34_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"605","DOI":"10.1007\/978-3-030-01246-5_36","volume-title":"Computer Vision \u2013 ECCV 2018","author":"T-W Ke","year":"2018","unstructured":"Ke, T.-W., Hwang, J.-J., Liu, Z., Yu, S.X.: Adaptive affinity fields for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 605\u2013621. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01246-5_36"},{"key":"34_CR10","doi-asserted-by":"crossref","unstructured":"Kong, S., Fowlkes, C.C.: Recurrent scene parsing with perspective understanding in the loop. CVPR 2018, 956\u2013965 (2018)","DOI":"10.1109\/CVPR.2018.00106"},{"key":"34_CR11","unstructured":"Li, H., Xiong, P., An, J., Wang, L.: Pyramid attention network for semantic segmentation. In: BMVC 2018, p. 285 (2018)"},{"key":"34_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"622","DOI":"10.1007\/978-3-030-01219-9_37","volume-title":"Computer Vision \u2013 ECCV 2018","author":"D Lin","year":"2018","unstructured":"Lin, D., Ji, Y., Lischinski, D., Cohen-Or, D., Huang, H.: Multi-scale context intertwining for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 622\u2013638. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01219-9_37"},{"key":"34_CR13","first-page":"5168","volume":"2017","author":"G Lin","year":"2017","unstructured":"Lin, G., Milan, A., Shen, C., Reid, I.D.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. CVPR 2017, 5168\u20135177 (2017)","journal-title":"CVPR"},{"key":"34_CR14","first-page":"3194","volume":"2016","author":"G Lin","year":"2016","unstructured":"Lin, G., Shen, C., van den Hengel, A., Reid, I.D.: Efficient piecewise training of deep structured models for semantic segmentation. CVPR 2016, 3194\u20133203 (2016)","journal-title":"CVPR"},{"key":"34_CR15","first-page":"936","volume":"2017","author":"T Lin","year":"2017","unstructured":"Lin, T., Doll\u00e1r, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CVPR 2017, 936\u2013944 (2017)","journal-title":"CVPR"},{"key":"34_CR16","first-page":"1377","volume":"2015","author":"Z Liu","year":"2015","unstructured":"Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. ICCV 2015, 1377\u20131385 (2015)","journal-title":"ICCV"},{"key":"34_CR17","first-page":"1520","volume":"2015","author":"H Noh","year":"2015","unstructured":"Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. ICCV 2015, 1520\u20131528 (2015)","journal-title":"ICCV"},{"key":"34_CR18","first-page":"3309","volume":"2017","author":"T Pohlen","year":"2017","unstructured":"Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. CVPR 2017, 3309\u20133318 (2017)","journal-title":"CVPR"},{"key":"34_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2014 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"issue":"4","key":"34_CR20","doi-asserted-by":"publisher","first-page":"640","DOI":"10.1109\/TPAMI.2016.2572683","volume":"39","author":"E Shelhamer","year":"2017","unstructured":"Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640\u2013651 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"34_CR21","first-page":"5998","volume":"2017","author":"A Vaswani","year":"2017","unstructured":"Vaswani, A., et al.: Attention is all you need. NIPS 2017, 5998\u20136008 (2017)","journal-title":"NIPS"},{"key":"34_CR22","first-page":"3684","volume":"2018","author":"M Yang","year":"2018","unstructured":"Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. CVPR 2018, 3684\u20133692 (2018)","journal-title":"CVPR"},{"key":"34_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"334","DOI":"10.1007\/978-3-030-01261-8_20","volume-title":"Computer Vision \u2013 ECCV 2018","author":"C Yu","year":"2018","unstructured":"Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334\u2013349. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01261-8_20"},{"key":"34_CR24","first-page":"1857","volume":"2018","author":"C Yu","year":"2018","unstructured":"Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a discriminative feature network for semantic segmentation. CVPR 2018, 1857\u20131866 (2018)","journal-title":"CVPR"},{"key":"34_CR25","unstructured":"Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR 2016 (2016)"},{"key":"34_CR26","first-page":"2050","volume":"2017","author":"R Zhang","year":"2017","unstructured":"Zhang, R., Tang, S., Zhang, Y., Li, J., Yan, S.: Scale-adaptive convolutions for scene parsing. ICCV 2017, 2050\u20132058 (2017)","journal-title":"ICCV"},{"key":"34_CR27","first-page":"6230","volume":"2017","author":"H Zhao","year":"2017","unstructured":"Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. CVPR 2017, 6230\u20136239 (2017)","journal-title":"CVPR"},{"key":"34_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1007\/978-3-030-01240-3_17","volume-title":"Computer Vision \u2013 ECCV 2018","author":"H Zhao","year":"2018","unstructured":"Zhao, H., et al.: PSANet: point-wise spatial attention network for scene parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 270\u2013286. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01240-3_17"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_34","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T22:19:43Z","timestamp":1619302783000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_34"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_34","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}