{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:51:53Z","timestamp":1726408313522},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_31","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T04:12:07Z","timestamp":1605672727000},"page":"275-283","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A Malware Classification Method Based on Basic Block and CNN"],"prefix":"10.1007","author":[{"given":"Jinrong","family":"Chen","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"31_CR1","unstructured":"Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265\u2013283. USENIX Association, Savannah (2016)"},{"key":"31_CR2","unstructured":"Alex, K., Ilya, S., Hg, E.: ImageNet classification with deep convolutional neural networks, pp. 1097\u20131105, January 2012"},{"key":"31_CR3","doi-asserted-by":"crossref","unstructured":"Gibert, D., Mateu, C., Planes, J., Vicens, R.: Classification of malware by using structural entropy on convolutional neural networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)","DOI":"10.1609\/aaai.v32i1.11409"},{"key":"31_CR4","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)","DOI":"10.1109\/CVPR.2014.81"},{"key":"31_CR5","unstructured":"Grimes, R.A.: Malicious Mobile Code. Oreilly & Associates Inc. (2001)"},{"issue":"1\u20132","key":"31_CR6","first-page":"1","volume":"19","author":"J Heaton","year":"2017","unstructured":"Heaton, J., Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. Genet. Program. Evol. Mach. 19(1\u20132), 1\u20133 (2017)","journal-title":"Genet. Program. Evol. Mach."},{"key":"31_CR7","doi-asserted-by":"publisher","first-page":"646","DOI":"10.1016\/j.jnca.2012.10.004","volume":"36","author":"MR Islam","year":"2013","unstructured":"Islam, M.R., Tian, R., Batten, L., Versteeg, S.: Classification of malware based on integrated static and dynamic features. J. Netw. Comput. Appl. 36, 646\u2013656 (2013). https:\/\/doi.org\/10.1016\/j.jnca.2012.10.004","journal-title":"J. Netw. Comput. Appl."},{"key":"31_CR8","volume-title":"Using File Relationships in Malware Classification","author":"N Karampatziakis","year":"2012","unstructured":"Karampatziakis, N., Stokes, J.W., Thomas, A., Marinescu, M.: Using File Relationships in Malware Classification. Springer, Heidelberg (2012)"},{"key":"31_CR9","unstructured":"Labs, M.: Mcafee labs threat report. McAfee Labs Threat Report (2019). https:\/\/www.mcafee.com\/enterprise\/en-us\/assets\/reports\/rp-quarterly-threats-aug-2019.pdf"},{"issue":"7553","key":"31_CR10","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y Lecun","year":"2015","unstructured":"Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)","journal-title":"Nature"},{"key":"31_CR11","doi-asserted-by":"publisher","unstructured":"Manku, G.S., Jain, A., Das Sarma, A.: Detecting near-duplicates for web crawling. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 141\u2013150. Association for Computing Machinery, New York (2007). https:\/\/doi.org\/10.1145\/1242572.1242592","DOI":"10.1145\/1242572.1242592"},{"key":"31_CR12","unstructured":"Microsoft: Microsoft malware classification challenge. Microsoft Malware Classification Challenge (2015). http:\/\/arxiv.org\/abs\/1802.10135"},{"key":"31_CR13","doi-asserted-by":"publisher","unstructured":"Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.: Malware images: visualization and automatic classification, July 2011. https:\/\/doi.org\/10.1145\/2016904.2016908","DOI":"10.1145\/2016904.2016908"},{"issue":"AUG","key":"31_CR14","doi-asserted-by":"publisher","first-page":"871","DOI":"10.1016\/j.cose.2018.04.005","volume":"77","author":"S Ni","year":"2018","unstructured":"Ni, S., Qian, Q., Zhang, R.: Malware identification using visualization images and deep learning. Comput. Secur. 77(AUG), 871\u2013885 (2018)","journal-title":"Comput. Secur."},{"issue":"7587","key":"31_CR15","doi-asserted-by":"publisher","first-page":"484","DOI":"10.1038\/nature16961","volume":"529","author":"D Silver","year":"2016","unstructured":"Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484\u2013489 (2016)","journal-title":"Nature"},{"key":"31_CR16","doi-asserted-by":"crossref","unstructured":"Stakhanova, N., Couture, M., Ghorbani, A.A.: Exploring network-based malware classification. In: 2011 6th International Conference on Malicious and Unwanted Software (2011)","DOI":"10.1109\/MALWARE.2011.6112321"},{"key":"31_CR17","doi-asserted-by":"crossref","unstructured":"Tian, K., Yao, D., Ryder, B., Tan, G.: Analysis of code heterogeneity for high-precision classification of repackaged malware. In: 2016 IEEE Security and Privacy Workshops (SPW), pp. 262\u2013271, May 016","DOI":"10.1109\/SPW.2016.33"},{"issue":"99","key":"31_CR18","first-page":"1","volume":"PP","author":"D Xue","year":"2019","unstructured":"Xue, D., Li, J., Lv, T., Wu, W., Wang, J.: Malware classification using probability scoring and machine learning. IEEE Access PP(99), 1 (2019)","journal-title":"IEEE Access"},{"key":"31_CR19","doi-asserted-by":"crossref","unstructured":"Yan, Z., et al.: HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition. In: IEEE International Conference on Computer Vision (2016)","DOI":"10.1109\/ICCV.2015.314"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,28]],"date-time":"2022-11-28T10:52:07Z","timestamp":1669632727000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_31","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}