{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:51:53Z","timestamp":1726408313464},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_29","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"256-264","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["SME User Classification from Click Feedback on a Mobile Banking Apps"],"prefix":"10.1007","author":[{"given":"Suchat","family":"Tungjitnob","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8359-9888","authenticated-orcid":false,"given":"Kitsuchart","family":"Pasupa","sequence":"additional","affiliation":[]},{"given":"Ek","family":"Thamwiwatthana","sequence":"additional","affiliation":[]},{"given":"Boontawee","family":"Suntisrivaraporn","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"29_CR1","doi-asserted-by":"publisher","unstructured":"Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), San Francisco, CA, USA, pp. 785\u2013794 (2016). https:\/\/doi.org\/10.1145\/2939672.2939785","DOI":"10.1145\/2939672.2939785"},{"issue":"1","key":"29_CR2","doi-asserted-by":"publisher","first-page":"49","DOI":"10.5555\/1803672.1803677","volume":"98","author":"K De Bock","year":"2010","unstructured":"De Bock, K., Van den Poel, D.: Predicting website audience demographics for web advertising targeting using multi-website clickstream data. Fundamenta Informaticae 98(1), 49\u201370 (2010). https:\/\/doi.org\/10.5555\/1803672.1803677","journal-title":"Fundamenta Informaticae"},{"key":"29_CR3","doi-asserted-by":"publisher","first-page":"13","DOI":"10.5121\/ijdkp.2017.7102","volume":"7","author":"C Dullaghan","year":"2017","unstructured":"Dullaghan, C., Rozaki, E.: Integration of machine learning techniques to evaluate dynamic customer segmentation analysis for mobile customers. Int. J. Data Mining Knowl. Manag. Process 7, 13\u201324 (2017). https:\/\/doi.org\/10.5121\/ijdkp.2017.7102","journal-title":"Int. J. Data Mining Knowl. Manag. Process"},{"key":"29_CR4","doi-asserted-by":"publisher","first-page":"96","DOI":"10.1177\/0894439308321592","volume":"27","author":"R Florez","year":"2008","unstructured":"Florez, R., Ramon, J.: Marketing segmentation through machine learning models: an approach based on customer relationship management and customer profitability accounting. Soc. Sci. Comput. Rev. 27, 96\u2013117 (2008). https:\/\/doi.org\/10.1177\/0894439308321592","journal-title":"Soc. Sci. Comput. Rev."},{"key":"29_CR5","doi-asserted-by":"publisher","first-page":"1189","DOI":"10.2307\/2699986","volume":"29","author":"J Friedman","year":"2001","unstructured":"Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189\u20131232 (2001). https:\/\/doi.org\/10.2307\/2699986","journal-title":"Ann. Stat."},{"key":"29_CR6","doi-asserted-by":"publisher","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, pp. 770\u2013778 (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.90","DOI":"10.1109\/CVPR.2016.90"},{"key":"29_CR7","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1016\/S0167-9236(02)00079-9","volume":"34","author":"E Kim","year":"2003","unstructured":"Kim, E., Kim, W., Lee, Y.: Combination of multiple classifiers for customer\u2019s purchase behavior prediction. Decis. Support Syst. 34, 167\u2013175 (2003). https:\/\/doi.org\/10.1016\/S0167-9236(02)00079-9","journal-title":"Decis. Support Syst."},{"key":"29_CR8","doi-asserted-by":"publisher","unstructured":"Li, W., Wu, X., Sun, Y., Zhang, Q.: Credit card customer segmentation and target marketing based on data mining. In: Proceedings of the International Conference on Computational Intelligence and Security (CIS 2010), Nanning, China, pp. 73\u201376 (2011). https:\/\/doi.org\/10.1109\/CIS.2010.23","DOI":"10.1109\/CIS.2010.23"},{"key":"29_CR9","doi-asserted-by":"publisher","unstructured":"Mihova, V., Pavlov, V.: A customer segmentation approach in commercial banks. In: AIP Conference Proceedings, vol. 2025, p. 030003 (2018). https:\/\/doi.org\/10.1063\/1.5064881","DOI":"10.1063\/1.5064881"},{"key":"29_CR10","doi-asserted-by":"publisher","first-page":"2592","DOI":"10.1016\/j.eswa.2008.02.021","volume":"36","author":"E Ngai","year":"2009","unstructured":"Ngai, E., Xiu, L., Chau, D.: Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst. Appl. 36, 2592\u20132602 (2009). https:\/\/doi.org\/10.1016\/j.eswa.2008.02.021","journal-title":"Expert Syst. Appl."},{"key":"29_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"419","DOI":"10.1007\/978-3-319-29451-3_34","volume-title":"Image and Video Technology","author":"K Pasupa","year":"2016","unstructured":"Pasupa, K., Chatkamjuncharoen, P., Wuttilertdeshar, C., Sugimoto, M.: Using image features and eye tracking device to predict human emotions towards abstract images. In: Br\u00e4unl, T., McCane, B., Rivera, M., Yu, X. (eds.) PSIVT 2015. LNCS, vol. 9431, pp. 419\u2013430. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-29451-3_34"},{"key":"29_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"830","DOI":"10.1007\/978-3-319-70093-9_88","volume-title":"Neural Information Processing","author":"K Pasupa","year":"2017","unstructured":"Pasupa, K., Sunhem, W., Loo, C.K., Kuroki, Y.: Can eye movement information improve prediction performance of human emotional response to images? In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10637, pp. 830\u2013838. (2017). https:\/\/doi.org\/10.1007\/978-3-319-70093-9_88"},{"key":"29_CR13","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1016\/j.neucom.2016.11.074","volume":"248","author":"K Pasupa","year":"2017","unstructured":"Pasupa, K., Szedmak, S.: Utilising Kronnecker decomposition and tensor-based multi-view learning to predict where people are looking in images. Neurocomputing 248, 80\u201393 (2017). https:\/\/doi.org\/10.1016\/j.neucom.2016.11.074","journal-title":"Neurocomputing"},{"key":"29_CR14","doi-asserted-by":"crossref","unstructured":"Sunhem, W., Pasupa, K.: A scenario-based analysis of front-facing camera eye tracker for UX-UI survey on mobile banking app. In: Proceedings of the 12th International Conference on Knowledge and Smart Technology (KST 2020), Pattaya, Thailand, pp. 80\u201385 (2020)","DOI":"10.1109\/KST48564.2020.9059376"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T10:17:28Z","timestamp":1619259448000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_29","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}