{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:59:24Z","timestamp":1726106364490},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_24","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"213-221","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["A Landmark Estimation and Correction Network for Automated Measurement of Sagittal Spinal Parameters"],"prefix":"10.1007","author":[{"given":"Guosheng","family":"Yang","sequence":"first","affiliation":[]},{"given":"Xiangling","family":"Fu","sequence":"additional","affiliation":[]},{"given":"Nanfang","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Kailai","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Ji","family":"Wu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"24_CR1","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1016\/j.cmpb.2016.12.010","volume":"140","author":"O Al Okashi","year":"2017","unstructured":"Al Okashi, O., Du, H., Al-Assam, H.: Automatic spine curvature estimation from X-ray images of a mouse model. Comput. Methods Programs Biomed. 140, 175\u2013184 (2017)","journal-title":"Comput. Methods Programs Biomed."},{"key":"24_CR2","doi-asserted-by":"publisher","first-page":"611","DOI":"10.1177\/2192568219868190","volume":"10","author":"BH Cho","year":"2019","unstructured":"Cho, B.H., et al.: Automated measurement of lumbar lordosis on radiographs using machine learning and computer vision. Glob. Spine J. 10, 611\u2013618 (2019)","journal-title":"Glob. Spine J."},{"key":"24_CR3","first-page":"261","volume":"5","author":"J Cobb","year":"1948","unstructured":"Cobb, J.: Outline for the study of scoliosis. Instr. Course Lect. AAOS 5, 261\u2013275 (1948)","journal-title":"Instr. Course Lect. AAOS"},{"issue":"5","key":"24_CR4","doi-asserted-by":"publisher","first-page":"951","DOI":"10.1007\/s00586-019-05944-z","volume":"28","author":"F Galbusera","year":"2019","unstructured":"Galbusera, F., et al.: Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur. Spine J. 28(5), 951\u2013960 (2019). https:\/\/doi.org\/10.1007\/s00586-019-05944-z","journal-title":"Eur. Spine J."},{"issue":"16","key":"24_CR5","doi-asserted-by":"publisher","first-page":"2072","DOI":"10.1097\/00007632-200008150-00011","volume":"25","author":"DE Harrison","year":"2000","unstructured":"Harrison, D.E., Harrison, D.D., Cailliet, R., Troyanovich, S.J., Janik, T.J., Holland, B.: Cobb method or Harrison posterior tangent method: which to choose for lateral cervical radiographic analysis. Spine 25(16), 2072\u20132078 (2000)","journal-title":"Spine"},{"key":"24_CR6","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"24_CR7","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision & Pattern Recognition (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"24_CR8","doi-asserted-by":"crossref","unstructured":"Horng, M.H., Kuok, C.P., Fu, M.J., Lin, C.J., Sun, Y.N.: Cobb angle measurement of spine from X-ray images using convolutional neural network. Comput. Math. Methods Med. (2019)","DOI":"10.1155\/2019\/6357171"},{"issue":"1","key":"24_CR9","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s11832-012-0457-4","volume":"7","author":"MR Konieczny","year":"2012","unstructured":"Konieczny, M.R., Senyurt, H., Krauspe, R.: Epidemiology of adolescent idiopathic scoliosis. J. Child. Orthop. 7(1), 3\u20139 (2012). https:\/\/doi.org\/10.1007\/s11832-012-0457-4","journal-title":"J. Child. Orthop."},{"key":"24_CR10","unstructured":"Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. In: Advances in Neural Information Processing Systems, pp. 9605\u20139616 (2018)"},{"key":"24_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"483","DOI":"10.1007\/978-3-319-46484-8_29","volume-title":"Computer Vision \u2013 ECCV 2016","author":"A Newell","year":"2016","unstructured":"Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483\u2013499. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46484-8_29"},{"issue":"12","key":"24_CR12","doi-asserted-by":"publisher","first-page":"3035","DOI":"10.1007\/s00586-019-06115-w","volume":"28","author":"Y Pan","year":"2019","unstructured":"Pan, Y., et al.: Evaluation of a computer-aided method for measuring the cobb angle on chest X-rays. Eur. Spine J. 28(12), 3035\u20133043 (2019)","journal-title":"Eur. Spine J."},{"key":"24_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"24_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"529","DOI":"10.1007\/978-3-319-59050-9_42","volume-title":"Information Processing in Medical Imaging","author":"H Sun","year":"2017","unstructured":"Sun, H., Zhen, X., Bailey, C., Rasoulinejad, P., Yin, Y., Li, S.: Direct estimation of spinal cobb angles by structured multi-output regression. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 529\u2013540. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-59050-9_42"},{"key":"24_CR15","doi-asserted-by":"crossref","unstructured":"Tu, Y., Wang, N., Tong, F., Chen, H.: Automatic measurement algorithm of scoliosis cobb angle based on deep learning. In: Journal of Physics: Conference Series, vol. 1187. IOP Publishing (2019)","DOI":"10.1088\/1742-6596\/1187\/4\/042100"},{"key":"24_CR16","doi-asserted-by":"crossref","unstructured":"Wang, L., Xu, Q., Leung, S., Chung, J., Chen, B., Li, S.: Accurate automated cobb angles estimation using multi-view extrapolation net. Med. Image Anal. 58 (2019)","DOI":"10.1016\/j.media.2019.101542"},{"key":"24_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1007\/978-3-319-66182-7_15","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2017","author":"H Wu","year":"2017","unstructured":"Wu, H., Bailey, C., Rasoulinejad, P., Li, S.: Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 127\u2013135. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66182-7_15"},{"key":"24_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.media.2018.05.005","volume":"48","author":"H Wu","year":"2018","unstructured":"Wu, H., Bailey, C., Rasoulinejad, P., Li, S.: Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med. Image Anal. 48, 1\u201311 (2018)","journal-title":"Med. Image Anal."},{"key":"24_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"775","DOI":"10.1007\/978-3-030-32226-7_86","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"K Zhang","year":"2019","unstructured":"Zhang, K., Xu, N., Yang, G., Wu, J., Fu, X.: An automated cobb angle estimation method using convolutional neural network with area limitation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 775\u2013783. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32226-7_86"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T10:17:51Z","timestamp":1619259471000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_24","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}