{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:59:34Z","timestamp":1726106374621},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_23","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"203-210","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Response Time Determinism in Healthcare Data Analytics Using Machine Learning"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2455-5337","authenticated-orcid":false,"given":"Syed Abdul Baqi","family":"Shah","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9627-7594","authenticated-orcid":false,"given":"Syed Mahfuzul","family":"Aziz","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"key":"23_CR1","doi-asserted-by":"crossref","unstructured":"AbdelRahman, S.E., et al.: A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission. BMC Med. Inform. Decis.-Making 14(1), 41 (2014)","DOI":"10.1186\/1472-6947-14-41"},{"issue":"9\u201310","key":"23_CR2","doi-asserted-by":"publisher","first-page":"503","DOI":"10.1007\/s12243-016-0496-9","volume":"71","author":"Q Althebyan","year":"2016","unstructured":"Althebyan, Q., et al.: Cloud support for large scale e-healthcare systems. Ann. Telecommun. 71(9\u201310), 503\u2013515 (2016). https:\/\/doi.org\/10.1007\/s12243-016-0496-9","journal-title":"Ann. Telecommun."},{"key":"23_CR3","first-page":"264","volume":"8","author":"L Balyen","year":"2019","unstructured":"Balyen, L., Peto, T.: Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pac. J. Ophthalmol. 8, 264\u2013272 (2019)","journal-title":"Asia-Pac. J. Ophthalmol."},{"issue":"4","key":"23_CR4","doi-asserted-by":"publisher","first-page":"310","DOI":"10.1109\/TBDATA.2016.2622719","volume":"2","author":"P Basanta-Val","year":"2016","unstructured":"Basanta-Val, P., et al.: Architecting time-critical big-data systems. IEEE Trans. Big Data 2(4), 310\u2013324 (2016)","journal-title":"IEEE Trans. Big Data"},{"issue":"4","key":"23_CR5","doi-asserted-by":"publisher","first-page":"317","DOI":"10.2146\/ajhp140424","volume":"72","author":"AC Catlin","year":"2015","unstructured":"Catlin, A.C., et al.: Comparative analytics of infusion pump data across multiple hospital systems. Am. J. Health-Syst. Pharm. 72(4), 317\u2013324 (2015)","journal-title":"Am. J. Health-Syst. Pharm."},{"key":"23_CR6","doi-asserted-by":"crossref","unstructured":"Chen, H., et al.: Relational network for knowledge discovery through heterogeneous biomedical and clinical features. Sci. Rep. 6, 29915 (2016)","DOI":"10.1038\/srep29915"},{"issue":"5","key":"23_CR7","doi-asserted-by":"publisher","first-page":"573","DOI":"10.1177\/0309364615605373","volume":"40","author":"AL Edwards","year":"2016","unstructured":"Edwards, A.L., et al.: Application of real-time machine learning to myoelectric prosthesis control: a case series in adaptive switching. Prosthet. Orthot. Int. 40(5), 573\u2013581 (2016)","journal-title":"Prosthet. Orthot. Int."},{"issue":"7639","key":"23_CR8","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1038\/nature21056","volume":"542","author":"A Esteva","year":"2017","unstructured":"Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115\u2013118 (2017)","journal-title":"Nature"},{"key":"23_CR9","doi-asserted-by":"publisher","first-page":"1511","DOI":"10.1080\/01605682.2018.1506561","volume":"70","author":"P Galetsi","year":"2019","unstructured":"Galetsi, P., Katsaliaki, K.: A review of the literature on big data analytics in healthcare. J. Oper. Res. Soc. 70, 1511\u20131529 (2019)","journal-title":"J. Oper. Res. Soc."},{"key":"23_CR10","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1016\/j.ijinfomgt.2019.05.003","volume":"50","author":"P Galetsi","year":"2020","unstructured":"Galetsi, P., Katsaliaki, K., Kumar, S.: Big data analytics in health sector: theoretical framework, techniques and prospects. Int. J. Inf. Manag. 50, 206\u2013216 (2020)","journal-title":"Int. J. Inf. Manag."},{"issue":"10","key":"23_CR11","doi-asserted-by":"publisher","first-page":"1299","DOI":"10.1164\/rccm.202003-0817LE","volume":"201","author":"L Gattinoni","year":"2020","unstructured":"Gattinoni, L., et al.: Covid-19 does not lead to a \u201ctypical\u201d acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 201(10), 1299\u20131300 (2020)","journal-title":"Am. J. Respir. Crit. Care Med."},{"issue":"4","key":"23_CR12","doi-asserted-by":"publisher","first-page":"760","DOI":"10.1016\/j.amjsurg.2019.07.018","volume":"218","author":"EY Huang","year":"2019","unstructured":"Huang, E.Y., et al.: Telemedicine and telementoring in the surgical specialties: a narrative review. Am. J. Surg. 218(4), 760\u2013766 (2019)","journal-title":"Am. J. Surg."},{"issue":"1","key":"23_CR13","first-page":"94","volume":"4","author":"J Kulynych","year":"2017","unstructured":"Kulynych, J., Greely, H.T.: Clinical genomics, big data, and electronic medical records: reconciling patient rights with research when privacy and science collide. J. Law Biosci. 4(1), 94\u2013132 (2017)","journal-title":"J. Law Biosci."},{"key":"23_CR14","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1016\/j.ijmedinf.2018.03.013","volume":"114","author":"N Mehta","year":"2018","unstructured":"Mehta, N., Pandit, A.: Concurrence of big data analytics and healthcare: a systematic review. Int. J. Med. Inform. 114, 57\u201365 (2018)","journal-title":"Int. J. Med. Inform."},{"issue":"01","key":"23_CR15","doi-asserted-by":"publisher","first-page":"2050005","DOI":"10.1142\/S021812662050005X","volume":"29","author":"M Rashid","year":"2020","unstructured":"Rashid, M., Shah, S.A.B., Arif, M., Kashif, M.: Determination of worst-case data using an adaptive surrogate model for real-time system. J. Circuits Syst. Comput. 29(01), 2050005 (2020)","journal-title":"J. Circuits Syst. Comput."},{"key":"23_CR16","doi-asserted-by":"publisher","first-page":"4417","DOI":"10.1007\/s00521-019-04095-y","volume":"32","author":"MI Razzak","year":"2019","unstructured":"Razzak, M.I., Imran, M., Xu, G.: Big data analytics for preventive medicine. Neural Comput. Appl. 32, 4417\u20134451 (2019)","journal-title":"Neural Comput. Appl."},{"key":"23_CR17","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.janxdis.2018.06.001","volume":"61","author":"GM Reger","year":"2019","unstructured":"Reger, G.M., Smolenski, D., Norr, A., Katz, A., Buck, B., Rothbaum, B.O.: Does virtual reality increase emotional engagement during exposure for PTSD? Subjective distress during prolonged and virtual reality exposure therapy. J. Anxiety Disord. 61, 75\u201381 (2019). https:\/\/doi.org\/10.1016\/j.janxdis.2018.06.001","journal-title":"J. Anxiety Disord."},{"issue":"3","key":"23_CR18","doi-asserted-by":"publisher","first-page":"3519","DOI":"10.1007\/s11042-016-3811-6","volume":"76","author":"M Sajjad","year":"2016","unstructured":"Sajjad, M., et al.: Mobile-cloud assisted framework for selective encryption of medical images with steganography for resource-constrained devices. Multimed. Tools Appl. 76(3), 3519\u20133536 (2016). https:\/\/doi.org\/10.1007\/s11042-016-3811-6","journal-title":"Multimed. Tools Appl."},{"key":"23_CR19","doi-asserted-by":"crossref","unstructured":"Shah, S.A.B., Rashid, M., Arif, M.: Estimating WCET using prediction models to compute fitness function of a genetic algorithm. Real-Time Syst. 1\u201336 (2020)","DOI":"10.1007\/s11241-020-09343-2"},{"key":"23_CR20","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.techfore.2015.12.019","volume":"126","author":"Y Wang","year":"2018","unstructured":"Wang, Y., Kung, L., Byrd, T.A.: Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Chang. 126, 3\u201313 (2018)","journal-title":"Technol. Forecast. Soc. Chang."},{"key":"23_CR21","series-title":"Studies in Big Data","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1007\/978-3-030-31672-3_8","volume-title":"Big Data Analytics in Healthcare","author":"DP Yedurkar","year":"2020","unstructured":"Yedurkar, D.P., Metkar, S.P.: Big data in electroencephalography analysis. In: Kulkarni, A.J., et al. (eds.) Big Data Analytics in Healthcare. SBD, vol. 66, pp. 143\u2013153. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-31672-3_8"},{"key":"23_CR22","doi-asserted-by":"crossref","unstructured":"Zobair, K.M., Sanzogni, L., Sandhu, K.: Telemedicine healthcare service adoption barriers in rural Bangladesh. Australas. J. Inf. Syst. 24 (2020)","DOI":"10.3127\/ajis.v24i0.2165"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T22:15:03Z","timestamp":1619302503000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_23","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}