{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T01:59:39Z","timestamp":1726106379298},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030638191"},{"type":"electronic","value":"9783030638207"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63820-7_18","type":"book-chapter","created":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T09:12:07Z","timestamp":1605690727000},"page":"159-167","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":16,"title":["A Semantically Flexible Feature Fusion Network for Retinal Vessel Segmentation"],"prefix":"10.1007","author":[{"given":"Tariq M.","family":"Khan","sequence":"first","affiliation":[]},{"given":"Antonio","family":"Robles-Kelly","sequence":"additional","affiliation":[]},{"given":"Syed S.","family":"Naqvi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,17]]},"reference":[{"issue":"22","key":"18_CR1","doi-asserted-by":"publisher","first-page":"4949","DOI":"10.3390\/s19224949","volume":"19","author":"A Khawaja","year":"2019","unstructured":"Khawaja, A., Khan, T.M., Khan, M.A.U., Nawaz, S.J.: A multi-scale directional line detector for retinal vessel segmentation. Sensors 19(22), 4949 (2019)","journal-title":"Sensors"},{"key":"18_CR2","doi-asserted-by":"publisher","first-page":"164344","DOI":"10.1109\/ACCESS.2019.2953259","volume":"7","author":"A Khawaja","year":"2019","unstructured":"Khawaja, A., Khan, T.M., Naveed, K., Naqvi, S.S., Rehman, N.U., Junaid Nawaz, S.: An improved retinal vessel segmentation framework using frangi filter coupled with the probabilistic patch based denoiser. IEEE Access 7, 164344\u2013164361 (2019)","journal-title":"IEEE Access"},{"issue":"1","key":"18_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/S0161-6420(84)34337-8","volume":"91","author":"R Klein","year":"1984","unstructured":"Klein, R., Klein, B.E., Moss, S.E.: Visual impairment in diabetes. Ophthalmology 91(1), 1\u20139 (1984)","journal-title":"Ophthalmology"},{"key":"18_CR4","doi-asserted-by":"publisher","first-page":"3524","DOI":"10.1109\/ACCESS.2018.2794463","volume":"6","author":"TA Soomro","year":"2018","unstructured":"Soomro, T.A., Khan, T.M., Khan, M.A.U., Gao, J., Paul, M., Zheng, L.: Impact of ICA-based image enhancement technique on retinal blood vessels segmentation. IEEE Access 6, 3524\u20133538 (2018)","journal-title":"IEEE Access"},{"issue":"6","key":"18_CR5","doi-asserted-by":"publisher","first-page":"517","DOI":"10.1016\/j.compmedimag.2014.05.010","volume":"38","author":"J Zhang","year":"2014","unstructured":"Zhang, J., Li, H., Nie, Q., Cheng, L.: A retinal vessel boundary tracking method based on Bayesian theory and multi-scale line detection. Comput. Med. Imag. Graph. 38(6), 517\u2013525 (2014)","journal-title":"Comput. Med. Imag. Graph."},{"key":"18_CR6","doi-asserted-by":"crossref","unstructured":"Memari, N., Saripan, M.I.B., Mashohor, S., Moghbel, M.: Retinal blood vessel segmentation by using matched filtering and fuzzy c-means clustering with integrated level set method for diabetic retinopathy assessment. J. Med. Biol. Eng. 1\u201319 (2018)","DOI":"10.1007\/s40846-018-0454-2"},{"key":"18_CR7","doi-asserted-by":"publisher","first-page":"01","DOI":"10.3390\/app8020155","volume":"8","author":"J Almotiri","year":"2018","unstructured":"Almotiri, J., Elleithy, K., Elleithy, A.: Retinal vessels segmentation techniques and algorithms: a survey. Appl. Sci. 8, 01 (2018)","journal-title":"Appl. Sci."},{"key":"18_CR8","doi-asserted-by":"crossref","unstructured":"Thakoor, K.A., Li, X., Tsamis, E., Sajda, P., Hood, D.C.: Enhancing the accuracy of glaucoma detection from oct probability maps using convolutional neural networks. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2036\u20132040 (2019)","DOI":"10.1109\/EMBC.2019.8856899"},{"key":"18_CR9","doi-asserted-by":"crossref","unstructured":"Zeng, X., Chen, H., Luo, Y., Ye, W.: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. IEEE Access 7, 30 744\u201330 753 (2019)","DOI":"10.1109\/ACCESS.2019.2903171"},{"issue":"1","key":"18_CR10","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1016\/j.ophtha.2012.06.054","volume":"120","author":"Y Muraoka","year":"2013","unstructured":"Muraoka, Y., et al.: Morphologic and functional changes in retinal vessels associated with branch retinal vein occlusion. Ophthalmology 120(1), 91\u201399 (2013)","journal-title":"Ophthalmology"},{"issue":"2","key":"18_CR11","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1016\/j.survophthal.2017.06.005","volume":"63","author":"MV Cicinelli","year":"2018","unstructured":"Cicinelli, M.V., et al.: Optical coherence tomography angiography in dry age-related macular degeneration. Surv. Ophthalmol. 63(2), 236\u2013244 (2018)","journal-title":"Surv. Ophthalmol."},{"issue":"8","key":"18_CR12","doi-asserted-by":"publisher","first-page":"5064","DOI":"10.1167\/iovs.11-7275","volume":"52","author":"S Traustason","year":"2011","unstructured":"Traustason, S., Jensen, A.S., Arvidsson, H.S., Munch, I.C., S\u00f8ndergaard, L., Larsen, M.: Retinal oxygen saturation in patients with systemic hypoxemia. Invest. Ophthalmol. Vis. Sci. 52(8), 5064 (2011)","journal-title":"Invest. Ophthalmol. Vis. Sci."},{"key":"18_CR13","doi-asserted-by":"crossref","unstructured":"Jiang, Y., Tan, N., Peng, T.: Optic disc and cup segmentation based on deep convolutional generative adversarial networks. IEEE Access 7, 64 483\u201364 493 (2019)","DOI":"10.1109\/ACCESS.2019.2917508"},{"key":"18_CR14","doi-asserted-by":"crossref","unstructured":"Jiang, Y., Zhang, H., Tan, N., Chen, L.: Automatic retinal blood vessel segmentation based on fully convolutional neural networks. Symmetry 11, 1112 (2019)","DOI":"10.3390\/sym11091112"},{"issue":"6","key":"18_CR15","doi-asserted-by":"publisher","first-page":"1856","DOI":"10.1109\/TMI.2019.2959609","volume":"39","author":"Z Zhou","year":"2020","unstructured":"Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856\u20131867 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"18_CR16","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning (2017)","DOI":"10.1609\/aaai.v31i1.11231"},{"key":"18_CR17","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1016\/j.neunet.2019.08.025","volume":"121","author":"N Ibtehaz","year":"2020","unstructured":"Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74\u201387 (2020)","journal-title":"Neural Netw."},{"issue":"4","key":"18_CR18","doi-asserted-by":"publisher","first-page":"501","DOI":"10.1109\/TMI.2004.825627","volume":"23","author":"J Staal","year":"2004","unstructured":"Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501\u2013509 (2004)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"3","key":"18_CR19","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1109\/42.845178","volume":"19","author":"AD Hoover","year":"2000","unstructured":"Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203\u2013210 (2000)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"18_CR20","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1109\/TMI.2015.2457891","volume":"35","author":"Q Li","year":"2016","unstructured":"Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., Wang, T.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109\u2013118 (2016)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"18_CR21","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1109\/TBME.2016.2535311","volume":"64","author":"JI Orlando","year":"2016","unstructured":"Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64(1), 16\u201327 (2016)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"18_CR22","doi-asserted-by":"crossref","unstructured":"Dasgupta, A., Singh, S.: A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: International Symposium on Biomedical Imaging, pp. 248\u2013251 (2017)","DOI":"10.1109\/ISBI.2017.7950512"},{"key":"18_CR23","doi-asserted-by":"crossref","unstructured":"Yan, Z., Yang, X., Cheng, K.T.: Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans. Biomed. Eng. 1 (2018)","DOI":"10.1109\/TBME.2018.2828137"},{"key":"18_CR24","doi-asserted-by":"crossref","unstructured":"Jiang, Y., Tan, N., Peng, T., Zhang, H.: Retinal vessels segmentation based on dilated multi-scale convolutional neural network. IEEE Access 7, 76 342\u201376 352 (2019)","DOI":"10.1109\/ACCESS.2019.2922365"},{"key":"18_CR25","doi-asserted-by":"crossref","unstructured":"Adapa, D., et al.: A supervised blood vessel segmentation technique for digital fundus images using zernike moment based features. PLOS ONE 15(3), 1\u201323 (2020)","DOI":"10.1371\/journal.pone.0229831"},{"issue":"12","key":"18_CR26","doi-asserted-by":"publisher","first-page":"2631","DOI":"10.1109\/TMI.2016.2587062","volume":"35","author":"J Zhang","year":"2016","unstructured":"Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, J.P.W., Duits, R., Romeny, B.M.: Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 35(12), 2631\u20132644 (2016)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"18_CR27","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1016\/j.eswa.2019.05.029","volume":"134","author":"TA Soomro","year":"2019","unstructured":"Soomro, T.A., Afifi, A.J., Gao, J., Hellwich, O., Zheng, L., Paul, M.: Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Syst. Appl. 134, 36\u201352 (2019)","journal-title":"Expert Syst. Appl."}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63820-7_18","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,28]],"date-time":"2022-11-28T15:48:38Z","timestamp":1669650518000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63820-7_18"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030638191","9783030638207"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63820-7_18","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"17 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangkok","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apnns.org\/ICONIP2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"618","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"189","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.18","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.68","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}