{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:04:05Z","timestamp":1740099845953,"version":"3.37.3"},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030637989"},{"type":"electronic","value":"9783030637996"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63799-6_25","type":"book-chapter","created":{"date-parts":[[2020,12,8]],"date-time":"2020-12-08T00:56:03Z","timestamp":1607388963000},"page":"331-344","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["In-Bed Human Pose Classification Using Sparse Inertial Signals"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-7417-6023","authenticated-orcid":false,"given":"Omar","family":"Elnaggar","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1026-6649","authenticated-orcid":false,"given":"Frans","family":"Coenen","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6131-0377","authenticated-orcid":false,"given":"Paolo","family":"Paoletti","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,12,8]]},"reference":[{"issue":"3\u20134","key":"25_CR1","doi-asserted-by":"publisher","first-page":"573","DOI":"10.1007\/s00779-015-0856-x","volume":"19","author":"MJ Deen","year":"2015","unstructured":"Deen, M.J.: Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquit. Comput. 19(3\u20134), 573\u2013599 (2015). https:\/\/doi.org\/10.1007\/s00779-015-0856-x","journal-title":"Pers. Ubiquit. Comput."},{"key":"25_CR2","doi-asserted-by":"publisher","unstructured":"Fallmann, S., Van Veen, R., Chen, L., Walker, D., Chen, F., Pan, C.: Wearable accelerometer based extended sleep position recognition. In: IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1\u20136 (2017). https:\/\/doi.org\/10.1109\/HealthCom.2017.8210806","DOI":"10.1109\/HealthCom.2017.8210806"},{"key":"25_CR3","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1016\/j.sleep.2017.08.026","volume":"42","author":"V Ib\u00e1\u00f1ez","year":"2018","unstructured":"Ib\u00e1\u00f1ez, V., Silva, J., Cauli, O.: A survey on sleep questionnaires and diaries. Sleep Med. 42, 90\u201396 (2018). https:\/\/doi.org\/10.1016\/j.sleep.2017.08.026","journal-title":"Sleep Med."},{"issue":"21","key":"25_CR4","doi-asserted-by":"publisher","first-page":"2934","DOI":"10.4236\/health.2014.621332","volume":"6","author":"A Nojiri","year":"2014","unstructured":"Nojiri, A., Okumura, C., Ito, Y.: Sleep posture affects sleep parameters differently in young and senior Japanese as assessed by actigraphy. Health 6(21), 2934\u20132944 (2014). https:\/\/doi.org\/10.4236\/health.2014.621332","journal-title":"Health"},{"issue":"12","key":"25_CR5","doi-asserted-by":"publisher","first-page":"1302","DOI":"10.1002\/ejhf.410","volume":"17","author":"GD Pinna","year":"2015","unstructured":"Pinna, G.D., et al.: Differential impact of body position on the severity of disordered breathing in heart failure patients with obstructive vs. central sleep apnoea. Eur. J. Heart Fail. 17(12), 1302\u20131309 (2015). https:\/\/doi.org\/10.1002\/ejhf.410","journal-title":"Eur. J. Heart Fail."},{"issue":"3","key":"25_CR6","doi-asserted-by":"publisher","first-page":"1192","DOI":"10.1109\/SURV.2012.110112.00192","volume":"15","author":"\u00d3D Lara","year":"2013","unstructured":"Lara, \u00d3.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192\u20131209 (2013). https:\/\/doi.org\/10.1109\/SURV.2012.110112.00192","journal-title":"IEEE Commun. Surv. Tutor."},{"issue":"22","key":"25_CR7","doi-asserted-by":"publisher","first-page":"7821","DOI":"10.1109\/JSEN.2016.2609392","volume":"16","author":"IH Lopez-Nava","year":"2016","unstructured":"Lopez-Nava, I.H., Angelica, M.M.: Wearable inertial sensors for human motion analysis: a review. IEEE Sens. J. 16(22), 7821\u20137834 (2016). https:\/\/doi.org\/10.1109\/JSEN.2016.2609392","journal-title":"IEEE Sens. J."},{"issue":"2","key":"25_CR8","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1145\/3372023","volume":"16","author":"M Alaziz","year":"2020","unstructured":"Alaziz, M., Jia, Z., Howard, R., Lin, X., Zhang, Y.: In-bed body motion detection and classification system. ACM Trans. Sens. Netw. 16(2), 131\u20131326 (2020). https:\/\/doi.org\/10.1145\/3372023","journal-title":"ACM Trans. Sens. Netw."},{"key":"25_CR9","doi-asserted-by":"publisher","first-page":"72826","DOI":"10.1109\/ACCESS.2019.2920025","volume":"7","author":"S Akbarian","year":"2019","unstructured":"Akbarian, S., Delfi, G., Zhu, K., Yadollahi, A., Taati, B.: Automated non-contact detection of head and body positions during sleep. IEEE Access 7, 72826\u201372834 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2019.2920025","journal-title":"IEEE Access"},{"issue":"6","key":"25_CR10","doi-asserted-by":"publisher","first-page":"1330","DOI":"10.1109\/TBME.2017.2750139","volume":"65","author":"HL Bartlett","year":"2018","unstructured":"Bartlett, H.L., Goldfarb, M.: A phase variable approach for IMU-based locomotion activity recognition. IEEE Trans. Biomed. Eng. 65(6), 1330\u20131338 (2018). https:\/\/doi.org\/10.1109\/TBME.2017.2750139","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"3","key":"25_CR11","doi-asserted-by":"publisher","first-page":"871","DOI":"10.1109\/TBME.2008.2006190","volume":"56","author":"SJ Preece","year":"2009","unstructured":"Preece, S.J., Goulermas, J.Y., Kenney, L.P., Howard, D.: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 56(3), 871\u2013879 (2009). https:\/\/doi.org\/10.1109\/TBME.2008.2006190","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"5","key":"25_CR12","doi-asserted-by":"publisher","first-page":"1073","DOI":"10.1109\/TIM.2012.2236792","volume":"62","author":"G Panahandeh","year":"2013","unstructured":"Panahandeh, G., Mohammadiha, N., Leijon, A., Handel, P.: Continuous hidden Markov model for pedestrian activity classification and gait analysis. IEEE Trans. Instrum. Meas. 62(5), 1073\u20131083 (2013). https:\/\/doi.org\/10.1109\/TIM.2012.2236792","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"25_CR13","series-title":"Internet of Things","doi-asserted-by":"publisher","first-page":"447","DOI":"10.1007\/978-3-030-02819-0_34","volume-title":"Advances in Body Area Networks I","author":"D Wu","year":"2019","unstructured":"Wu, D., Zhang, H., Niu, C., Ren, J., Zhao, W.: Inertial sensor based human activity recognition via reduced kernel PCA. In: Fortino, G., Wang, Z. (eds.) Advances in Body Area Networks I. IT, pp. 447\u2013456. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-02819-0_34"},{"key":"25_CR14","doi-asserted-by":"publisher","unstructured":"Kasebzadeh, P., Hendeby, G., Fritsche, C., Gunnarsson, F., Gustafsson, F.: IMU dataset for motion and device mode classification. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN) (2017). https:\/\/doi.org\/10.1109\/IPIN.2017.8115956","DOI":"10.1109\/IPIN.2017.8115956"},{"issue":"302","key":"25_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/s18010302","volume":"18","author":"T Zimmermann","year":"2018","unstructured":"Zimmermann, T., Taetz, B., Bleser, G.: IMU-to-segment assignment and orientation alignment for the lower body using deep learning. Sensors 18(302), 1\u201335 (2018). https:\/\/doi.org\/10.3390\/s18010302","journal-title":"Sensors"},{"issue":"9","key":"25_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/s18092892","volume":"18","author":"OS Eyobu","year":"2018","unstructured":"Eyobu, O.S., Han, D.S.: Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network. Sensors 18(9), 1\u201326 (2018). https:\/\/doi.org\/10.3390\/s18092892","journal-title":"Sensors"},{"issue":"2485","key":"25_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/s18082485","volume":"18","author":"H Ohashi","year":"2018","unstructured":"Ohashi, H., Al-Naser, M., Ahmed, S., Nakamura, K., Sato, T., Dengel, A.: Attributes\u2019 importance for zero-shot pose-classification based on wearable sensors. Sensors 18(2485), 1\u201317 (2018). https:\/\/doi.org\/10.3390\/s18082485","journal-title":"Sensors"},{"key":"25_CR18","doi-asserted-by":"publisher","unstructured":"Zhang, Z., Yang, G.Z.: Monitoring cardio-respiratory and posture movements during sleep: what can be achieved by a single motion sensor. In: IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1\u20136 (2015). https:\/\/doi.org\/10.1109\/BSN.2015.7299409","DOI":"10.1109\/BSN.2015.7299409"},{"issue":"6","key":"25_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1136\/bmjopen-2018-027633","volume":"9","author":"D Cary","year":"2019","unstructured":"Cary, D., Briffa, K., McKenna, L.: Identifying relationships between sleep posture and non-specific spinal symptoms in adults: a scoping review. BMJ Open 9(6), 1\u201310 (2019). https:\/\/doi.org\/10.1136\/bmjopen-2018-027633","journal-title":"BMJ Open"},{"key":"25_CR20","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1007\/978-0-85729-997-0_9","volume-title":"Visual Analysis of Humans","author":"G Pons-Moll","year":"2011","unstructured":"Pons-Moll, G., Rosenhahn, B.: Model-based pose estimation. In: Moeslund, T., Hilton, A., Kr\u00fcger, V., Sigal, L., et al. (eds.) Visual Analysis of Humans, pp. 139\u2013170. Springer, London (2011). https:\/\/doi.org\/10.1007\/978-0-85729-997-0_9"},{"issue":"4","key":"25_CR21","doi-asserted-by":"publisher","first-page":"634","DOI":"10.1016\/j.jhsa.2013.12.031","volume":"39","author":"R Garg","year":"2014","unstructured":"Garg, R., et al.: Wrist kinematic coupling and performance during functional tasks: effects of constrained motion. J. Hand Surg. 39(4), 634\u2013642 (2014). https:\/\/doi.org\/10.1016\/j.jhsa.2013.12.031","journal-title":"J. Hand Surg."},{"issue":"8","key":"25_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/s19081782","volume":"19","author":"HS Nam","year":"2019","unstructured":"Nam, H.S., Lee, W.H., Seo, H.G., Kim, Y.J., Bang, M.S., Kim, S.: Inertial measurement unit based upper extremity motion characterization for action research arm test and activities of daily living. Sensors 19(8), 1\u201310 (2019). https:\/\/doi.org\/10.3390\/s19081782","journal-title":"Sensors"},{"issue":"5","key":"25_CR23","doi-asserted-by":"publisher","first-page":"981","DOI":"10.1016\/j.jbiomech.2004.05.042","volume":"38","author":"G Wu","year":"2005","unstructured":"Wu, G., et al.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - part II: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981\u2013992 (2005). https:\/\/doi.org\/10.1016\/j.jbiomech.2004.05.042","journal-title":"J. Biomech."},{"issue":"100944","key":"25_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.aei.2019.100944","volume":"42","author":"KM Rashid","year":"2019","unstructured":"Rashid, K.M., Louis, J.: Times-series data augmentation and deep learning for construction equipment activity recognition. Adv. Eng. Inform. 42(100944), 1\u201312 (2019). https:\/\/doi.org\/10.1016\/j.aei.2019.100944","journal-title":"Adv. Eng. Inform."},{"issue":"3","key":"25_CR25","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1023\/B:STCO.0000035301.49549.88","volume":"14","author":"AJ Smola","year":"2004","unstructured":"Smola, A.J., Sch\u00f6lkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199\u2013222 (2004). https:\/\/doi.org\/10.1023\/B:STCO.0000035301.49549.88","journal-title":"Stat. Comput."},{"key":"25_CR26","series-title":"Advances in Pattern Recognition","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-1-84996-098-4_2","volume-title":"Support Vector Machines for Pattern Classification","author":"S Abe","year":"2010","unstructured":"Abe, S.: Two-class support vector machines. In: Singh, S. (ed.) Support Vector Machines for Pattern Classification. Advances in Pattern Recognition, pp. 21\u2013106. Springer, London (2010). https:\/\/doi.org\/10.1007\/978-1-84996-098-4_2"},{"key":"25_CR27","series-title":"Springer Series in Statistics","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-84858-7","volume-title":"The Elements of Statistical Learning: Data Mining, Inference, and Prediction","author":"T Hastie","year":"2009","unstructured":"Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. SSS. Springer, New York (2009). https:\/\/doi.org\/10.1007\/978-0-387-84858-7"},{"key":"25_CR28","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1162\/15324430152733133","volume":"1","author":"EL Allwein","year":"2000","unstructured":"Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113\u2013141 (2000). https:\/\/doi.org\/10.1162\/15324430152733133","journal-title":"J. Mach. Learn. Res."},{"key":"25_CR29","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1613\/jair.105","volume":"2","author":"TG Dietterich","year":"1995","unstructured":"Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263\u2013286 (1995). https:\/\/doi.org\/10.1613\/jair.105","journal-title":"J. Artif. Intell. Res."},{"issue":"1","key":"25_CR30","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1109\/JPROC.2015.2494218","volume":"104","author":"B Shahriari","year":"2016","unstructured":"Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148\u2013175 (2016). https:\/\/doi.org\/10.1109\/JPROC.2015.2494218","journal-title":"Proc. IEEE"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence XXXVII"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63799-6_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,12,8]],"date-time":"2020-12-08T01:04:05Z","timestamp":1607389445000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-63799-6_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030637989","9783030637996"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63799-6_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"8 December 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SGAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Innovative Techniques and Applications of Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cambridge","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 December 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 December 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"40","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"sgai2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/bcs-sgai.org\/ai2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}